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Abstract

An Adaptive Cartesian Grid Projection Method for Environmental Flows

by

Michael Frederick Barad

Doctor of Philosophy in Civil and Environmental Engineering

University of California, Davis

Professor S. Geoffrey Schladow, Chair

In this work we present our block-structured adaptive mesh refinement (AMR) computa-

tional fluid dynamics model. The model is based on the solution of the unsteady, incompress-

ible, Navier-Stokes equations in two or three dimensions, including air/water and fluid/solid

interfaces and the transport of scalars. The methodology is based on a second-order ac-

curate projection method with high-order accurate Godunov finite differencing including

slope limiting and a stable differencing of the nonlinear convection terms. This is a proven

methodology for hyperbolic problems that yields accurate transport with low phase error

while minimizing the numerical diffusion at steep gradients typically found in classical high

order finite difference methods. This methodology is combined with finite volume AMR

discretizations based on flux matching at refinement boundaries to obtain a conservative

method that is second-order accurate in solution error for environmental flows. The control

volumes are formed by the intersection of the irregular embedded boundary with Cartesian
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grid cells. Unlike typical discretization methods, these control volumes naturally fit within

easily parallelized disjoint block data structures, and permit dynamic AMR coarsening and

refinement as a simulation progresses. AMR allows the simulation of a range of spatial

and temporal scales. Capturing these ranges is critical to accurately modeling multiscale

transport complexities such as boundaries, fronts, and mixing zones that exist in natural

environments.
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Chapter 1

Introduction

1.1 Motivation

We want to develop an analysis capability to study highly nonlinear, multiscale

flows in oceans, lakes, and rivers that are well represented by the incompressible Navier-

Stokes equations. Examples of such flows are: internal waves, coastal plumes, density

currents in lakes, flows in branched estuarine slough networks, and flows past highly complex

topography. Issues involved include complex and often sparse geometries, large ranges in

spatial and temporal scales, moving fronts and highly complex mixing zones. We hope

to provide a predictive tool for both engineering and science with an enhanced ability to

interpret and extend the results of field and laboratory studies.
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1.2 Review of Previous Work

1.2.1 Models

Historically, computational environmental fluid mechanics methods have focused

on simplifying either the governing equations or the dimensionality of the problem (and often

both). The equations have been reduced to as simple as the one dimensional Bernoulli equa-

tions, yet most numerical methods solve either shallow-water, hydrostatic, and/or Boussi-

nesq approximations in one, two, or three dimensions.

The main benefit of shallow-water models is that they are computationally very

efficient, this is due to the hyperbolic nature of the shallow-water equations. The major

drawback of shallow-water models is that they crudely approximate complex flows in one

dimension (1D) or two dimensions (2D), where three-dimensional (3D) effects are entirely

neglected.

Hydrostatic models are able to represent fluid motion in 3D, yet the vertical mo-

mentum balance is replaced by a hydrostatic balance between vertical pressure gradients

and buoyancy forcing. One of the main benefits of 3D hydrostatic models is that they are

computationally more efficient than nonhydrostatic models because the elliptic problems

are two-dimensional. Unfortunately, the hydrostatic approximation entirely neglects verti-

cal accelerations in the vertical momentum balance; this is highly problematic for studying

complex, highly non-linear 3D motions [70, 105].

The Boussinesq approximation is very common in numerical models of geophysical

hydrodynamics. The Boussinesq approximation assumes that density variations are small

compared to a reference fluid density. Boussinesq models neglect density variations in all
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terms but the buoyancy forcing. For many problems, the Boussinesq approximation works

well for variations in density that are less than roughly four percent [66]. For highly non-

linear, density driven flows with density variations more than four percent, the Boussinesq

approximation can introduce subtle errors that deviate from a full incompressible Navier-

Stokes solution [66, 49].

Our approach will solve the complete incompressible Navier-Stokes equations in

either 2D or 3D, with a full variable density forcing (except on the viscous term where

we invoke a Boussinesq approximation). For a more detailed summary of 3D geophysical

hydrodynamic models see [95].

1.2.2 Temporal Discretizations

There is a range of approaches for solving the incompressible Navier-Stokes equa-

tions. Methods include artifical compressibility methods (see [29]), Lagrangian vortex meth-

ods (see [28]), Galerkin finite element methods (see [50, 20]), and different flavors of pro-

jection methods.

Projection methods are a powerful solution technique for the incompressible Navier-

Stokes equations pioneered in a series of papers by Chorin [25, 26, 27]. In Chorin’s work he

developed a numerical projection method using a discrete form of the Hodge decomposition.

In projection methods the solution is advanced by predicting a velocity field that does not

satisfy a discrete divergence constraint, and then correcting the predicted velocity so that

it is approximately divergence-free. In the predictor step, it is necessary to explicitly ap-

proximate the advective terms, and (for viscous problems) to subsequently solve a parabolic

equation implicitly for the predictor velocity. The correction is achieved by solving an el-
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liptic equation implicitly via a Hodge decomposition [30]. For the parabolic solves in the

predictor step, researchers have used first-order accurate backward-Euler methods, second-

order accurate Crank-Nicolson [9], and other implicit Runge-Kutta methods [104, 75].

Chorin’s original work was based on first-order accurate in time discretizations.

The projection method was then extended to second-order accuracy in time by Bell et. al.

[9]. The method was further extended to variable density flows in [12], and subsequently

with adaptive mesh refinement in [1, 72]. Various other researchers have extended the

projection method, including [48, 102, 46, 78, 64, 87, 99] among others. In this research

we will extend the approach of [9] to complex geometry with variable density and adaptive

mesh refinement. See [21] for a more detailed history of projection methods.

1.2.3 Spatial Discretizations

Discretization Methods

To study fluid systems, researchers typically use one of two reference frames: Eule-

rian or Lagrangian. The Lagrangian reference frame follows individual fluid parcels as they

move through space and time, while the Eulerian reference frame focuses on fixed regions

in space where fluid may pass. For this work we use the Eulerian reference frame. A dis-

cussion of Lagrangian methods is beyond the scope of this work, the interested reader will

find [79, 37, 68, 55] informative. With an Eulerian method, researchers typically discretize

space using one of three methods: finite element, finite difference, or finite volume.

Typical finite element methods have the benefit of irregular elements. These ele-

ments have the attractive characteristic that, with refinement they can accurately fit arbi-



5

trarily complex geometries, yet they necessitate unstructured data structures for the entire

flow field (which are discussed below), and typically lead to non-conservative discretizations.

The most basic finite difference methods utilize “stair-step” (i.e. in or out rect-

angular volumes) approximations to irregular geometry and suffer from a catastrophic lack

of accuracy for non-orthogonal geometries (see Appendix A.3). Immersed boundary and

ghost-fluid methods [86, 51, 47] are an attractive finite difference method (due to their

implementation simplicity) but suffer due to conservation issues stemming from a non-flux

based approach.

The finite volume method is the most attractive of the spatial discretization meth-

ods due to its conservation properties. In finite volume methods the flow domain is decom-

posed into individual control volumes.

Mapped grid based control volumes are a very promising method yet they are not

able to handle arbitrarily complex geometries (for lack of a mapping function). The Em-

bedded Boundary (or cut-cell) method [60, 75, 92, 31] is an elegant technique where control

volumes are formed by the intersection of the domain with rectangular grid cells. The in-

tersections can be computed to arbitrary accuracy, and are generated with an O(N
D−1

D )

algorithm from distance type functions (e.g. a Digital Elevation Model). For the bulk of

the flow domain we use a structured grid, for the irregular control volumes (on a codi-

mension one less than the bulk) we use an unstructured mapping within each (domain

decomposition) box. With this embedded boundary spatial description, the geometry can

be arbitrarily complex, yielding tractable, efficient and accurate conservative finite volume

discretizations. In this research we use a finite volume method where our control volumes
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are of the Embedded Boundary (EB) type.

Structured and Unstructured Gridding

If the control volumes are computationally represented on a rectangular array,

or on a union of rectangular arrays the mesh is termed structured, otherwise the mesh is

termed unstructured. Meshes that can change as a simulation progresses are referred to

as temporally adaptive. Meshes that are not uniform throughout the spatial domain are

referred to as spatially adaptive.

Models that use unstructured meshes have cumbersome data structures that are

computationally less efficient to access and require more complex mathematical techniques

to maintain accuracy. While unstructured mesh models have the benefit of spatial adaptiv-

ity, temporally adaptive fully unstructured numerical methods are still an open question.

Non-adaptive, structured mesh codes utilize highly efficient data structures but require

global refinement which is prohibitively costly for multiscale flows. The most successful

structured, spatially and temporally adaptive codes use blocks to partition the domain into

regions of equal refinement. Block structured adaptive codes benefit from highly efficient

data structures, the ability to locally refine, and well understood conservative finite volume

discretization methods. Excluding this work, all known existing computational environ-

mental fluid mechanics models use meshes that are non-adaptive in time.



7

1.3 Proposed Method

In this section the key features of our method for solving the incompressible Navier-

Stokes equations are outlined. Specifically, the governing equations, accuracy of the method,

spatial discretization, and implementation are discussed.

1.3.1 Second-Order Accurate Projection Method For Incompressible Navier-

Stokes

Instead of shallow-water, hydrostatic, or Boussinesq approximations that are typ-

ically found in geophysical hydrodynamic models, this research solves the incompressible

variable-density Navier-Stokes equations, following [12], and exhibits second-order accurate

convergence in time and space. Note that we treat our viscous term with a Boussinesq

approximation, but, due to the nearly inviscid nature of geophysical flows, this is an in-

significant approximation. Solving the nonhydrostatic equations is essential for accurately

simulating flows with pressure distributions that significantly deviate from hydrostatic (i.e.

p 6= ρgz + po). Avoiding the (inviscid) Boussinesq approximation permits the simulation

of geophysical flows where density deviations are significant enough to alter the motions

through more than just the buoyancy term.

The algorithms in this research yield second-order accurate solution errors for

the governing equations. For second-order methods, when the mesh spacing is refined

by a factor of two, the error is reduced by a factor of four. Higher-order methods can

resolve flow features that lower-order methods can only resolve with significantly finer (and

therefor less efficient) grids. A common claim in the geophysical hydrodynamic modeling
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community is that numerical methods are r-order accurate (r=1,2) without backing this up

with convergence studies for realistic problems. In this work we systematically show second-

order accurate results for both the de-coupled operators and for a range of incompressible

Navier-Stokes test problems.

1.3.2 Accurate Spatial Description with Embedded Boundaries

In this research the irregular domain is discretized as a collection of control volumes

formed by the intersection of the domain with rectangular grid cells. With this efficient and

accurate embedded boundary spatial description, the geometry can be arbitrarily complex.

This geometric capability permits the accurate study of a variety of complex fluid flows such

as those that occur on coastal shelves, in branched estuarine slough networks, in complex

closed conduits, and even past the detailed structures of benthic invertebrates. The current

generation of numerical methods for modeling environmental flows is severely limited in

their ability to model such complex geometries.

1.3.3 Multiscale Capturing with Adaptive Mesh Refinement

Adaptive methods for the numerical solution of partial differential equations con-

centrate computational effort when and where it is most needed. For over two decades

block-structured adaptive mesh refinement (AMR) has proven useful for overcoming limi-

tations in computational resources and accuracy in problems outside of the environmental

fluid mechanics community in such fluid fields as astrophysics [10, 35], combustion [84, 11],

atmospheric science [94], applied mathematics [1, 5, 13, 8, 14, 16, 100] aerospace engineer-

ing [15] and ink jet printer design [99]. In environmental fluid mechanics, most prior work
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has focused on static, one-way nested refinement strategies, where finer grids are nested

within coarser grids and these grids do not adapt in time. In one-way nesting, there is no

feedback between the fine and coarse grids [85], while in two-way nesting, the solution on

the fine grid is coupled to the solution on the coarse grid [106, 42, 1, 72]. Conservative,

flux based two-way AMR coupling has desirable well posedness properties, e.g. divergence

operators have desirable telescoping sum properties (see [5]).

AMR with conservative two-way nesting provides the capability to simultaneously

capture scales ranging many orders of magnitude (e.g. from hundreds of kilometers to

meters). Consider oceanic internal waves, AMR works by placing coarse grids over the entire

flow domain, and recursively finer nested grids adaptively track the generation, propagation,

interaction and dissipation of internal waves. With AMR, one can “zoom in” on moving

regions and accurately capture the important flow physics at multiple scales. Accurately

capturing a range of spatial and temporal scales is critical to accurately simulating complex

environmental flows.

The embedded boundary approach naturally fits within easily parallelized disjoint

block data structures, and permits dynamic AMR coarsening and refinement as a simulation

progresses (see Figure 3.9 for an example embedded boundary AMR grid). The physical

processes that we wish to study contain spatial scales that span meters to hundreds of

kilometers, with temporal scales ranging from seconds to days. The only way to accurately

resolve this range of scales is to use parallel adaptive mesh refinement on high performance

computers. With AMR the mathematical model tracks important flow features with finer

grids as they evolve throughout the spatial and temporal flow domain, expending compu-
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tational resources only where and when they are needed. The application of AMR to the

study of environmental flows is a new and powerful technique. In this research we use fully

adaptive, block structured, two-way nested meshes.

1.3.4 Implementation

This work was implemented within, and extended the Chombo [32] adaptive mesh

refinement framework. Chombo provides the necessary data structures to implement the

highly complex adaptive algorithms required for solving the incompressible Navier-Stokes

equations in irregular domains. Chombo builds and executes on a range of computational

platforms, from laptops to parallel supercomputers. Chombo is implemented primarily in

the C++ programming language. For performance reasons, Chombo also provides an in-

terface to FORTRAN for fast, regular array operations. Chombo also provides an elegant

dimension independent programming paradigm that accelerates the development cycle due

to both the ease of debugging in reduced dimensions, and due to a single code base for mul-

tiple dimensions. This dissertation is a collaborative effort with all the Chombo developers.

1.4 Summary of Contents

In this thesis an adaptive Cartesian grid projection method is presented, and

results for idealized and field-scale geophysical flows are presented.

Chapter 2 describes the governing equations that we solve and the basic mathe-

matical theory behind the projection method. Chapter 2 also includes boundary conditions,

and notations that are used throughout this work. In Chapter 3 we describe our embed-
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ded boundary discretization, including our geometric description, and our single-grid finite

volume discretizations for elliptic, parabolic, and hyperbolic PDEs. Chapter 4 describes

our solution methodology for solving the incompressible Navier-Stokes equations. Chapter

5 describes our extension of the single-grid algorithm to block-structured adaptive mesh

refinement. In Chapter 6, we present results from both lab-scale classical fluid mechanics

problems and from field-scale geophysical flows. In Chapter 7, we summarize the work and

highlight how our results are significant.

This work contains four appendices. Appendix A is a catch all for discretizations

that lack a home in Chapter 4. Appendix B presents convergence results for the de-coupled

operators. Appendix C presents example grid generation and flow visualizations. Appendix

D presents journal papers co-authored during the completion of this dissertation.
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Chapter 2

Governing Equations

2.1 Incompressible Navier-Stokes Equations

• Momentum balance,

~ut + (~u · ∇)~u = −∇p
ρ

+ ~g + ν∆~u (2.1)

• Divergence-free constraint,

∇ · ~u = 0 (2.2)

• Density conservation,

ρt + ~u · ∇ρ = 0 (2.3)

• Passive scalar transport,

st + ~u · ∇s = ks∆s+Hs (2.4)

We have left out the Coriolis term in the momentum balance. For problems where the

Coriolis term is relevant, this term can easily be added to our method by following [48].
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2.2 Boundary Conditions

We define our flow domain as Ω, and the boundary of this domain as ∂Ω. We

decompose ∂Ω into n disjoint domain boundaries (Di), and m disjoint embedded boundaries

(Ej). We denote the boundary set as, ∂Ω = (
⋃n
i=1Di)

⋃

(
⋃m
j=1Ej). Domain boundaries are

only permitted to exist on a specified rectangular parallelepiped Γ, where Ω is contained

within Γ. Embedded boundaries are permitted to exist on or within Γ. For each Di and

Ej , we permit different boundary conditions for each variable (~u, p, ρ, and s). We do not

permit periodic boundary conditions on Ej .

We define ~n as the unit normal to the boundary which points into the fluid. With

~τ1, and ~τ2 unit vectors tangential to the boundary, where ~n ⊥ ~τ1 ⊥ ~τ2. The following

Sub-Sections describe the boundary conditions in detail.

2.2.1 Velocity Boundary Conditions

On solid surfaces the following velocity boundary conditions are permitted:

1. Dirichlet for any solid surface (EB or domain boundary): ~u = ~b

2. Free-slip for domain walls: ~u · ~n = 0, ∇(~u · ~τ1) · ~n = 0, and ∇(~u · ~τ2) · ~n = 0.

At inflow boundaries we specify ~u. At outflow boundaries and free-surface boundaries we

specify ~u ·~n by setting ∇·~u = 0, unless, for outflow in the hyperbolic operators, this leads to

inflow, in which case we set the velocity normal to the domain boundary to zero. For outflow

and free-surface in the hyperbolic operators we specify the tangential velocity components

by extrapolating normal to the domain face. For outflow in the viscous operators we specify
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a zero gradient condition on velocity. The method also permits periodic domain boundary

conditions.

2.2.2 Pressure Boundary Conditions

Pressure boundary conditions we prescribe to be compatible with velocity bound-

ary conditions and the governing equations. Specifically, for solid surfaces (where ~u ·~n = 0)

we prescribe,

∇p
ρ

· ~n = ~g · ~n. (2.5)

At inflow faces we prescribe boundary conditions as in (2.5). With a hydrostatic free-surface

Dirichlet boundary condition for pressure at z = 0,

p = patm − ρogη. (2.6)

where g is gravitational acceleration. For outflows at boundaries we prescribe hydrostatic

pressure,

p = patm − ρog(η − z), (2.7)

where z = 0 is the top plane of Γ (see Γ in Section 2.2) in direction D. The method also

permits periodic domain boundary conditions.

Free-Surface Pressure Boundary Condition: Using Shallow-Water Equations

To satisfy (2.6) and (2.7), we need to specify η, the free-surface height (as in

[62, 39]). To do this, we first define a depth averaging operator

<>≡ 1

η +H

∫ η

−H
dz, (2.8)
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where we define the unperturbed depth H as the vertical distance from z = 0 to the

bathymetry. We also define a horizontal divergence

∇⊥ · ~F ≡
∑

d′ 6=D

∂ ~Fd′

∂xd′
, (2.9)

a horizontal gradient ∇⊥ which contains all but the vertical component, and a horizon-

tal vector ~F⊥ which contains all but the vertical component. If we depth average our

divergence-free constraint and apply boundary conditions we obtain,

ηt + ∇⊥ · ((η +H) < ~u >) = 0. (2.10)

If we depth average our momentum balance (2.1) we obtain,

< ~ut + (~u · ∇)~u > = < −∇p
ρ

+ ~g + ν∆~u > (2.11)

where if we decompose the pressure: p ≡ pAtmospheric + pHydrostatic + pNonhydrostatic, this

yields,

< ~u >t + < (~u · ∇)~u >= − <
∇pH
ρ

> − <
∇pN
ρ

> +~g+ < ν∆~u > . (2.12)

If we neglect all but the hydrostatic and temporal acceleration terms, assume constant

density, and only keep the horizontal balance, we have

< ~u⊥ >t + <
∇⊥pH
ρo

>≈ 0. (2.13)

We recall the hydrostatic pressure is pH = −ρg(η − z), where g is the gravitational accel-

eration. This results in a horizontal equation, where the depth averaged velocity is driven

solely by free-surface gradients,

< ~u⊥ >t −g∇⊥η ≈ 0. (2.14)
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We evolve the free-surface height η by solving (2.10) and (2.14). We use η to set our

free-surface pressure boundary condition (2.6) and (2.7).

Note: all results presented in this work are “rigid-lid” (η = 0), a description of our

un-tested free-surface algorithm is given in Appendix A.4-A.5.

2.2.3 Scalar Boundary Conditions

Scalar boundary conditions we prescribe to be compatible with velocity bound-

ary conditions. Note that density boundary conditions are treated the same as scalars.

Specifically, for solid surfaces we prescribe no flux,

∇s · ~n = 0. (2.15)

For inflow boundaries we specify scalars to be some known value,

s = f(~x, t). (2.16)

For outflow boundaries in the hyperbolic operator we extrapolate the scalar normal to the

boundary. For the free-surface we prescribe no flux through the free-surface. The method

also permits periodic domain boundary conditions.

2.3 Projection Formulation

Following the work of Chorin [27, 26, 28, 25, 30] we shall use the Helmholtz-

Hodge Decomposition Theorem: A vector field ~w on a region of space Ω can be uniquely

decomposed in the form

~w = ~u+ ∇φ, (2.17)
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∆φ = ∇ · ~w (2.18)

∇ · ~u = 0 (2.19)

∇φ · ~n = ~w · ~n at ∂Ω (2.20)

~u · ~n = 0 at ∂Ω (2.21)

With this decomposition we can define an orthogonal projection operator P, which

maps ~w onto its divergence-free part ~u. The projection operator is the following linear

operator

P ≡ I − Q (2.22)

Q ≡ ∇∆−1∇· (2.23)

where I is the identity matrix. Notice that

P~u = ~u, (2.24)

P∇φ = 0, (2.25)

and

~w = P~w + ∇φ. (2.26)

See [30] for a more rigorous mathematical discussion of the projection operator and the

Helmholtz-Hodge decomposition.

For variable-density flows we follow [12] and utilize a density weighted decompo-

sition

~w = ~u+
∇φ
ρ
. (2.27)
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The density weighted projection operator is the following linear operator

Pρ ≡ I − Qρ (2.28)

Qρ ≡
1

ρ
∇L−1

ρ ∇· (2.29)

where I is the identity matrix and where Lρ is defined in (2.34). Notice that we still have

Pρ~u = ~u, (2.30)

Pρ
∇φ
ρ

= 0, (2.31)

and

~w = Pρ ~w +
∇φ
ρ
. (2.32)

In Section 4.2 we will define discrete versions of the projection operator.

2.4 Other Notation

In what follows, we will use the following notation

A[ψ] ≡ (~u · ∇)ψ, (2.33)

and

Lβ [φ] ≡ ∇ · ( 1

β
∇φ). (2.34)

For clarity we can expand the forms of (2.33). First the momentum advection terms,

A[~u] ≡ (~u · ∇)~u =

















uux + vuy + wuz

uvx + vvy + wvz

uwx + vwy + wwz

















(2.35)
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then the density advection term,

A[ρ] ≡ ~u · ∇ρ = uρx + vρy + wρz (2.36)

then the scalar advection term,

A[s] ≡ ~u · ∇s = usx + vsy + wsz. (2.37)

The divergence of the gradient with variable coefficients (2.34) is expanded as

Lβ [φ] ≡ ∇ · ( 1

β
∇φ) = (

1

β
φx)x + (

1

β
φy)y + (

1

β
φz)z (2.38)

In the following chapters we shall also use the constant coefficient (where ν is independent

of ~x) elliptic operator (in vector form) to represent the viscous acceleration terms as follows,

L~u ≡ ν∆~u = ν

















∆u

∆v

∆w

















= ν

















uxx + uyy + uzz

vxx + vyy + vzz

wxx + wyy + wzz

















(2.39)
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Chapter 3

Embedded Boundary

Discretization

3.1 Geometric Description

3.1.1 Introduction to Embedded Boundaries

To discretize space we utilize the Embedded Boundary (or cut-cell) method [60,

75, 92, 31]. In the Embedded Boundary (EB) method control volumes are formed by the

intersection of the domain with Cartesian grid cells. The intersections can be computed

to arbitrary accuracy, and are generated with an O(N
D−1

D ) algorithm (where N ≡ total

number of control volumes, including regular) from distance type functions (e.g. a Digital

Elevation Model).

With the EB method, for the bulk of the flow, which is O(N) control volumes, we

compute on a regular Cartesian grid. We use an EB description for the O(N
D−1

D ) control
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Figure 3.1: Example 2D embedded boundary control volume, arrows indicate fluxes.

volumes that intersect the boundary (where D is the dimensionality of the problem). The

advantages of an underlying rectangular grid are as follows: grid generation is tractable,

with a straightforward coupling to block-structured adaptive mesh refinement (AMR); good

discretization technology, e.g. well-understood consistency theory for conservative finite dif-

ferences; geometric multigrid for elliptic solvers; away from boundaries, the method reduces

to a standard conservative finite difference method.

An example two-dimensional EB is shown in Figure 3.1. Example three-dimensional

EB control volumes are shown in Figure 3.2. In these figures the curves indicate the intersec-

tion of the exact boundary with a Cartesian cell. Note that to enable second-order accurate

methods for this work, we approximate face intersections using quadratic interpolants, but

the EB method can be extended to arbitrary accuracy.

To discretize our conservation laws using EB’s all we need are the following quan-

tities: volume fractions, area fractions, centroids, boundary areas, and boundary normals.
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Figure 3.2: Example 3D embedded boundary control volumes.

Given these geometric quantities on a fine grid, we can compute the same quantities on

coarser grids without reference to the original geometry (by geometric coarsening). This

permits efficient, dynamic coarsening and refinement of highly complex geometry as a sim-

ulation progresses (e.g. AMR and multigrid). An example coarsening sequence is shown in

Figures 3.3-3.6.

EB’s are “water tight” by construction, i.e. if two control-volumes share a face,

they both have the same area fraction for that face. Unlike typical complex geometry dis-

cretization methods, the EB control volumes naturally fit within easily parallelized disjoint

block data structures.
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Figure 3.3: An arbitrarily complex object represented on a 16 by 16 grid. On our finest
grids the connectivity graph has only one control volume (node) per grid cell.

Figure 3.4: The arbitrarily complex object coarsened onto an 8 by 8 grid. The connectivity
graph has been coarsened and can contain more than one node per grid cell.
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Figure 3.5: The arbitrarily complex object coarsened onto a 4 by 4 grid. The connectivity
graph has been coarsened and can contain more than one node per grid cell.

Figure 3.6: The arbitrarily complex object coarsened onto a 2 by 2 grid. The connectivity
graph has been coarsened and can contain more than one node per grid cell.
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3.1.2 Geometry Generation

Embedded Boundary Notation

The underlying discretization of space is given by rectangular control volumes on

a Cartesian grid: Υid
= [idhd, (id + ud)hd], i ∈ Z

D, where D is the dimensionality of the

problem, hd is the mesh spacing in direction d, and u is the vector whose entries are all ones.

In the case of a fixed, irregular domain Ω, the geometry is represented by the intersection

of Ω with the Cartesian grid. We obtain control volumes Vi = Υi ∩ Ω and faces A
i± 1

2
ed

,

which are the intersection of ∂Vi with the coordinate planes {x : xd = (id ± 1
2)hd}. Here

ed is the unit vector in the d direction. We also define AB
i

to be the intersection of the

boundary of the irregular domain with the Cartesian control volume: AB
i

= ∂Ω ∩ Υi. We

will assume here that there is a one-to-one correspondence between the control volumes

and faces and the corresponding geometric entities on the underlying Cartesian grid. The

description can be generalized to allow for boundaries whose width is less than the mesh

spacing or boundaries with sharp trailing edges.

Geometric Quantities

In order to construct finite difference methods, we will need only a small number

of real-valued quantities that are derived from geometric objects.

• Areas and volumes are expressed in these dimensionless terms:

Volume fractions: κi = |Vi|
D
∏

d=1

1

hd
(3.1)
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Face apertures: α
i± 1

2
ed

= |A
i± 1

2
ed
|
∏

d′ 6=d

1

hd′
(3.2)

Boundary apertures: αBi = |ABi |h
−(D−1)
1 (3.3)

We assume that we can compute estimates of the dimensionless quantities that are

sufficiently accurate (i.e. O(h2) for apertures, O(h) for volume fractions).

• The locations of centroids, and the average outward normal to the boundary are given

exactly by:

Face centroid: x
i+ 1

2
ed

=
1

|A
i+ 1

2
ed
|

∫

A
i+1

2
ed

xdA (3.4)

Boundary face centroid: x
B
i =

1

|AB
i
|

∫

AB
i

xdA (3.5)

Outward normal: n
B
i =

1

|AB
i
|

∫

AB
i

n
BdA (3.6)

where n
B is the outward normal to ∂Ω, defined for each point on ∂Ω. Again, we

assume that we can compute estimates of these quantities that are accurate to O(h2).

Using just these quantities, we can define conservative discretizations for all the required

operators.
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3.1.3 Embedded Boundary Examples

Here we present example visualizations to illustrate our ability to approximate

complex geometry using the Embedded Boundary method. Our first example is shown

in Figure 3.7 and is an approximation of a sphere. It is important to note that in this

and the following figures we visualize the EB’s as piecewise planar, when in fact we use

piecewise quadratic approximations for face intersections. The next example is generated

from imaging data of a coral (see Figure 3.8). This coral example illustrates our ability to

handle arbitrarily complex geometry in a completely automated and efficient way given a

distance function. The next two examples are generated from digital elevation models: San

Francisco Bay and Lake Tahoe (see Figures 3.9 and 3.10).

3.2 Divergence of Fluxes

Using just the geometric quantities from Section 3.1.2, we can define conservative

discretizations for the divergence operator. Let ~F = (F 1 . . . FD) be a function of x. Using

the divergence theorem we have

∇ · ~F ≈ 1

|Vi|

∫

Vi

∇ · ~FdV =
1

|Vi|

∫

∂Vi

~F · ndA

≈ 1

|Vi|
[

(

∑

±=+,−

D
∑

d=1

±|A
i± 1

2
ed |F d(xi± 1

2
ed)

)

+ |ABi |nBi · ~F (xBi )
]

,

(3.7)

where (3.7) is obtained by replacing the integrals of the normal components of the vector

field ~F with the values at the face centroids.
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Figure 3.7: EB approximation of a sphere. On the colored slices one can see the edges of
individual control volumes.

Figure 3.8: EB approximation of a coral. Thanks to Dr. Jaap A. Kaandorp for the Madracis
Mirabilis CT scan data.
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Figure 3.9: EB approximation of Northern San Francisco Bay with adaptive mesh refinement
boxes (in blue).

Figure 3.10: EB approximation of Lake Tahoe, with a single level of domain decomposition
boxes (in black). Domain decomposition boxes contain control volumes that are within
the index space of that box. Thanks to Todd Steissberg for assisting with the Lake Tahoe
digital elevation model.
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3.3 Elliptic and Parabolic Equations

3.3.1 Poisson’s Equation

We first consider Poisson’s equation on an irregular domain Ω.

∆ψ = ρ on Ω

∂ψ

∂n
= gN on ∂Ω

or

ψ = gD on ∂Ω

(3.8)

We define a discrete variable φ, φi ≈ ψ(ih). Using the discretization of the diver-

gence defined in (3.7), we can define a discretization of Poisson’s equation (∇ · ∇φ = ρ) as

follows.

(∆hφ)i = ρi (3.9)

(∆hφ)i =
1

|Vi|
[

(

∑

±=+,−

D
∑

d=1

±|A
i± 1

2
ed |F d

i± 1

2
ed

)

+ |ABi |FB
]

(3.10)

where ρi = ρ(ih), and the fluxes F d and FB are linear combinations of φi and the boundary

values (~F = ∇φ). In practice, we avoid problems arising from arbitrarily small values of

|Vi| in the denominator (of 3.10) by recalling (3.1) and solving:

κi(∆
hφ)i = κiρi (3.11)

The fluxes are given by bilinear interpolation of centered differences. Explicitly,

bilinear interpolation of fluxes can be written as an iteration of linear interpolation of fluxes
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Figure 3.11: Three-dimensional bilinear flux

in the two directions that are not normal to the face. For example, given the face with

outward normal e
1, with centroid x, define the linearly interpolated flux in the d (d 6= 1)

direction by

F d
i+ 1

2
e1 = η

(φi+e1 − φi)

h1
+ (1 − η)

(φi+e1±ed − φi±ed)

h1

η = 1 − |x · ed|
hd

± =























+ x · ed > 0

− x · ed ≤ 0.

(3.12)
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The bilinear interpolation of the flux for the face with normal e
1 can be written

F
i+ 1

2
e1 = ωF d

i+ 1

2
e1 + (1 − ω)F d

i±ed′+ 1

2
e1

ω = 1 − |x · ed′ |
hd′

± =























+ x · ed′ > 0

− x · ed′ ≤ 0

(3.13)

where d′ 6= d, d′ 6= 1, as in Figure 3.11.

We note that the particular choice of bilinear interpolation for computing the fluxes

is a nontrivial one for obtaining a stable method. In particular, we also tried using simple

linear interpolation based on three of the faces in Figure 3.11, omitting the face offset along

the diagonal. We found that such a method is unstable for some configurations of adjacent

small control volumes, in the sense that point Jacobi fails to converge for any value of the

relaxation parameter. No such instability was observed for the bilinear scheme. For that

reason, we have chosen to reduce order to a piecewise constant interpolant of the fluxes if

all four faces required for a bilinear interpolant are unavailable.

Boundary Conditions

For Neumann boundary conditions the flux on the boundary is specified. For

Dirichlet boundary conditions further calculations are necessary. Our higher-order method,

for use when the geometry is well resolved, is a generalization of the methods described in

[59]. Figure 3.12 shows how this generalizes to 3D.
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Figure 3.12: Diagram of the second-order stencil for the gradient normal to the interface.
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∂φ

∂n
≈ 1

d2 − d1
(
d2

d1
(φB − φI1) −

d1

d2
(φB − φI2)) (3.14)

Here we have used φB for the value of φ on the boundary, which is given by the

Dirichlet boundary condition. Interpolation from cell centered values determines φI1 and φI2

at distance d1 and d2 away from the boundary, respectively.

If all 18 cells are available in Figure 3.12, we make an order O(h2) estimate ∇φ

as follows. Depending on the orientation of the normal, two planes are chosen, P1 and

P2. Using biquadratic interpolation, two values φI1 and φI2 are calculated, each requiring 9

values.

The gradient is then calculated by fitting a quadratic to the interpolated values

and the value at the interface. We chose the planes P1, P2 to be perpendicular to e
d, where

d is given by

{d : nBd ≥ nBℓ , ℓ = 1, 2, 3}. (3.15)

In cases where the requisite eighteen cells are not available, we employ a lower-order

stencil to estimate the flux to O(h). In 3D this lower-order stencil contains at most eight

points including the centroid of the embedded boundary. These eight points are chosen as

follows. We associate each one of the eight possible configurations of plus or minus signs of

the components of the normal vector with one of the octants in the the coordinate system

with origin at the centroid. The stencil consists of the cell-centers of the seven nearest

cells in this octant, excluding the cell-center of the control volume containing the boundary

centroid itself.
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From these points we create an overdetermined linear system to estimate ∇φ as

follows:

A · ∇φ = δφ (3.16)

where

A = (δx1, δx2, ..., δx7)
T

δφ = (δφ1, δφ2, ..., δφ7)
T

δxm = xm − x
B
i

δφm = φm − φB.

We determine ∇φ using least squares by solving the normal equations:

ATA · ∇φ = AT δφ.

Provided that A contains three linearly independent rows, ATA is invertible. This

is always the case provided the set {xm} contains all points of the form (i + e
d)h, plus at

least one other point. If that is not the case, we set ∇φ ≡ 0. These methods lead to a

condition number for ∆h that is bounded independent of κ, and comparable to that of the

uniform grid algorithm.

Truncation and Solution Error

We define the truncation error in the usual fashion: τi = ρi − ∆hφexact
i

, where

φexact
i

= ψ(ih). We then have the following asymptotic error estimates for the truncation

error. At regular cells

τi = O(h2). (3.17)
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If i is an irregular cell, and the flux on the boundary is second-order accurate, as in (3.14),

then

τi = O
( h

κi

)

. (3.18)

If we use the flux computation given by (3.16), the flux on the boundary is first order

accurate, and we have

τi = O
( 1

κi

)

. (3.19)

We refer to methods that satisfy truncation error estimates of the form (3.18) on the ir-

regular control volumes as being formally consistent. We also define the solution error

ǫi = φi − φexact
i

.

There is one apparent problem with this truncation error estimate: it is only first

order accurate at the boundary. Nonetheless, we observe robust second-order convergence of

the solution in max norm [92]. These two facts can be reconciled using a modified equation

analysis [59]. Both methods of calculating the gradient for Dirichlet boundary conditions,

(3.14) and (3.16), lead to a second-order solution error. This is because, for Dirichlet

boundary conditions, solution error is two orders of accuracy more than the truncation

error on the boundary.

3.3.2 Variable Coefficient Elliptic Equation

Now we consider a variable coefficient elliptic partial differential equation on an

irregular domain Ω. It is this variable coefficient elliptic equation that we use in the density

weighted projections (DWPM1 & DWPM2) of Section 4.2.2.
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∇ · β∇ψ = ρ on Ω

β
∂ψ

∂n
= gN on ∂Ω

or

ψ = gD on ∂Ω

(3.20)

We define a discrete variable φ, φi ≈ ψ(ih). Using the discretization of the di-

vergence defined in (3.7), we can define a discretization of the variable coefficient elliptic

equation as follows.

Lh[φ, β]i = ρi, (3.21)

Lh[φ, β]i =
1

|Vi|
[

(

∑

±=+,−

D
∑

d=1

±|A
i± 1

2
ed |F d

i± 1

2
ed

)

+ |ABi |FB
]

(3.22)

where ρi = ρ(ih), and the fluxes F d and FB are linear combinations of φi, βi, and

the boundary values (~F = β∇φ). Again, we avoid problems arising from arbitrarily small

values of |Vi| in the denominator (of 3.22) by recalling (3.1) and solving:

κiL
h[φ, β]i = κiρi (3.23)

The fluxes are given by bilinear interpolation of centered differences. Explicitly,

bilinear interpolation of fluxes can be written as an iteration of linear interpolation of fluxes

in the two directions that are not normal to the face. For example, given the face with

outward normal e
1, with centroid x, define the linearly interpolated flux in the d (d 6= 1)

direction by
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F d
i+ 1

2
e1 = η

βi + βi+e1

2

(φi+e1 − φi)

h1
+ (1 − η)

βi+e1±ed + βi±ed

2

(φi+e1±ed − φi±ed)

h1

η = 1 − |x · ed|
hd

± =























+ x · ed > 0

− x · ed ≤ 0.

(3.24)

The bilinear interpolation of the flux for the face with normal e
1 can be written as in (3.13).

Boundary Conditions

Boundary conditions are as in Section 3.3.1, subject to (3.20).

3.3.3 The Heat Equation

We now consider the heat equation. ψ : R3 × [0,∞] → R is the unknown and

f : R3 × [0,∞] → R is the source term. We solve

∂ψ

∂t
= ∆ψ + f

∂ψ

∂n
= gN (x, t), x ∈ ∂Ω

or

ψ = gD(x, t), x ∈ ∂Ω.

(3.25)

We define discrete variables, φi(t), fi(t)

φi(t) ≈ ψ(ih, t), fi(t) ≈ f(ih, t). (3.26)
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This leads to a semi-discrete system of ODEs

dφi

dt
= ∆hφi + fi (3.27)

We discretize this system in time using the L0-stable “TGA” method [104], which was also

described in [75, 92], as outlined below.

Denote by I the identity operator and by ∆h
I and ∆h

H the discrete Laplacian (3.9)

with inhomogeneous and homogeneous boundary conditions, respectively. We split the time

step ∆t such that

µ1 + µ2 + µ3 = ∆t

µ1 + µ2 + µ4 = ∆t/2.

The update at step n uses the boundary values at the old and new times and also at an

intermediate time tint:

φn+1 = (I − µ1∆
h
I (tnew))−1(I − µ2∆

h
I (tint))

−1 ·

[(I + µ3∆
h
I (told))φ

n + (I + µ4∆
h
H)f(tavg)∆t] (3.28)

where

told = n∆t

tnew = (n+ 1)∆t = told + µ1 + µ2 + µ3

tint = tnew − µ1 = told + µ2 + µ3

tavg = (told + tnew)/2 = told + µ1 + µ2 + µ4.
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For a second-order L0-stable method, following [104], we pick a > 1/2 and

µ1 =
a−

√
a2 − 4a+ 2

2
∆t

µ2 =
a+

√
a2 − 4a+ 2

2
∆t

µ3 = (1 − a)∆t

µ4 = (
1

2
− a)∆t.

For a method that uses real arithmetic only, the truncation error is minimized by taking

a = 2 −
√

2 − ǫ, where ǫ is machine precision.

It was shown in [75] for Dirichlet boundary conditions that Crank-Nicolson time

discretization exhibited oscillatory behavior and furthermore was unstable to some types of

forcing at a moving boundary. In [61] this behavior was attributed to the combination of the

neutral stability of Crank-Nicolson at high wave numbers and the presence of eigenvalues of

∆h with non-trivial imaginary parts, corresponding to eigenvalues with oscillatory behavior

near the boundary.

3.4 Hyperbolic Equations

We use the explicit hyperbolic methodology developed in [31, 83], with a few minor

deviations for incompressible flow. We describe this in detail in Section (4.3).
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Chapter 4

The Incompressible Navier-Stokes

Equations on a Single Grid

In this chapter we describe the single grid algorithm and the discretizations nec-

essary to solve the incompressible Navier-Stokes equations in this work.

4.1 Semidiscrete Version of Projection Formulation

Using the hyperbolic methodology of Section 3.4, the elliptic and parabolic method-

ology of Section 3.3.1, and the projection ideas from Section 2.3 we are now in a position

to describe our solution strategy for the incompressible Navier-Stokes equations. The over-

all algorithm for advancing a single time step is presented sequentially in the following

Sub-Sections.
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4.1.1 Compute Advective Terms

Compute the cell-centered advective terms (2.35), (2.36), and (2.37): A[~u]n+ 1

2 ,

A[ρ]n+ 1

2 , and A[s]n+ 1

2 . See Section 4.3 for details.

4.1.2 Update Scalars

We advect ρ with,

ρn+1 − ρn

∆t
+A[ρ]n+ 1

2 = 0. (4.1)

We compute half time ρ as follows

ρn+ 1

2 =
ρn+1 + ρn

2
. (4.2)

The discrete passive scalar update is,

sn+1 = (I − µ1L)−1(I − µ2L)−1

[

(I + µ3L)sn + (I + µ4L)f
n+ 1

2
s ∆t

]

(4.3)

where,

f
n+ 1

2
s ≡ −A[s]n+ 1

2 +H
n+ 1

2
s . (4.4)

Note that for simplicity in (4.3) the Laplacian operators (L) include the diffusion constant

(ks), as in (2.39).

4.1.3 Predict Velocity

We predict the new velocity by solving the parabolic system for the cell-centered

~u∗ using TGA from Section 3.3.3. The parabolic (using TGA) time discretized momentum

equations are,

~un+1 = (I − µ1L)−1(I − µ2L)−1

[

(I + µ3L)~un + (I + µ4L)fn+ 1

2 ∆t

]

(4.5)
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where,

fn+ 1

2 ≡ −A[~u]n+ 1

2 − ∇pn+ 1

2

ρn+ 1

2

+ ~gn+ 1

2 . (4.6)

A[~u] is defined in (2.35), and it’s discretization is defined in Section 4.3. Since we don’t know

the new gradient of pressure and can’t ensure a divergence-free ~un+1, we take a predictor

(or fractional) step for ~u∗ (using TGA),

~u∗ = (I − µ1L)−1(I − µ2L)−1

[

(I + µ3L)~un + (I + µ4L)fn−
1

2 ∆t

]

(4.7)

where,

fn−
1

2 ≡ −A[~u]n+ 1

2 − ∇pn− 1

2

ρn+ 1

2

+ ~gn+ 1

2 . (4.8)

Note that for simplicity in (4.5) and (4.7) the Laplacian operators (L) include the diffusion

constant (ν), as in (2.39).

4.1.4 Correct Predicted Velocity

We correct ~u∗ by approximately projecting it onto a divergence-free space. We do

this by using Pcc
ρ , a cell-centered discretization of the projection operator, and update the

pressure gradient. Following [2, 9, 12, 64] and (4.5)-(4.8) we have

~u∗ = ~un+1 + ∆t
∇pn+ 1

2 −∇pn− 1

2

ρn+ 1

2

+O(∆t3). (4.9)

We present two different density weighted approximate projection formulations.

The first method we term DWPM1 and is given by

~un+1 = Pcc

ρn+1
2

(

~u∗ + ∆t
(∇pn− 1

2

ρn+ 1

2

− ~g
)

)

+ ∆t~g, (4.10)

∇pn+ 1

2

ρn+ 1

2

=
1

∆t
Qcc

ρn+1
2

(

~u∗ + ∆t
(∇pn− 1

2

ρn+ 1

2

− ~g
)

)

. (4.11)
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The second method we term DWPM2 and is given by

~un+1 = Pcc

ρn+1
2

(

~u∗
)

, (4.12)

∇pn+ 1

2

ρn+ 1

2

=
∇pn− 1

2

ρn+ 1

2

+
1

∆t
Qcc

ρn+1
2

(

~u∗
)

. (4.13)

These approximate cell-centered projections differ in that the first method, DWPM1, we

solve an elliptic equation for the pressure (pn+ 1

2 ), while in the second method, DWPM2, we

solve an elliptic equation for the pressure change (pn+ 1

2 − pn−
1

2 ). With DWPM1 we have

the benefit of an implicit solve for pressure at every time step (at n + 1
2). The DWPM1

drawback is that it is not clear how to extend the pressure outflow boundary conditions to

variable-density outflows in hydrostatic balance. With DWPM2 we have desirable pt = 0

outflow boundary conditions, but we have an incremental update for the pressure (pn+ 1

2 )

at every time step. A secondary drawback to DWPM2 is that the pressure and pressure

gradient is subject to accumulation of high frequency error for flows where the pressure

is nearly constant in time. This is due to the fact that there is no mechanism to damp

these errors with an incremental update (DWPM1 damps the errors via the elliptic solve

for pn+ 1

2 ), see [2] for a relevant discussion. Nonetheless, DWPM2 produces good results as

is seen in Section 6.5.2.

As part of the cell-centered projection, our last step is to apply a filter to damp

divergent modes that are in the null space of our cell-centered projection (see Section 4.2.2).

4.2 Discretizing Projections

In this work we need to define projections for two data types: face-centered and

cell-centered. The face-centered operator Pmac
ρ is defined in Section 4.2.1, while the cell-
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centered projection operator Pcc
ρ is defined in Section 4.2.2.

In Sections 4.2.1 and 4.2.2, velocity boundary conditions for the velocity operators

are specified in Section 2.2.1, and pressure boundary conditions for the pressure operators

are specified in Section 2.2.2. Note that the pressure difference (pn+ 1

2 −pn− 1

2 ) elliptic solves

(in DWPM2) have a desirable homogeneous boundary condition at outflow, eliminating the

need to approximate a variable-density hydrostatic pressure (as is the case for DWPM1 at

outflow).

4.2.1 Face-Centered MAC Projection

This projection is based on face-centered advective velocities. The Hodge decom-

position of the advective velocities is

u∗,d
i+ 1

2
ed

= ud
i+ 1

2
ed

+ [
∇dφ

ρ
]
i+ 1

2
ed
. (4.14)

We first define the discrete operators needed for the projection, then we define the

face-centered projection operator.

Face-Centered Divergence

We define face-centered vector fields ~F = (F1, ..., FD), such that ~F
i+ 1

2
ed

is at face-

centers. For regular control-volumes (non-EB) we define a discretized divergence operator

on such a vector field as follows

Dmac · ~F ≡ 1

|Vi|
[

(

∑

±=+,−

D
∑

d=1

±|A
i± 1

2
ed |F d(xi± 1

2
ed)

)

]

, (4.15)

where (4.15) is obtained by replacing the integrals of the normal components of the vector

field ~F with the values at face centers. For irregular control volumes (non-EB) we define a
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discretized divergence operator on such a vector field as follows

Dmac · ~F ≡ 1

|Vi|
[

(

∑

±=+,−

D
∑

d=1

±|A
i± 1

2
ed |F d(xi± 1

2
ed)

)

+ |ABi |nBi · ~F (xBi )
]

, (4.16)

where (4.16) is obtained by replacing the integrals of the normal components of the vector

field ~F with the values at the face centroids.

Face-Centered Gradient

We define the face-centered gradient Gmac,d[φ]
i+ 1

2
ed

for each direction d using

Gmac,d[ψ]
i+ 1

2
ed

=
ψi+e − ψi

∆xd
. (4.17)

To scale the MAC-gradient by density (ρ
i+ 1

2
ed

) we divide as follows

[
Gmac,dφ

ρ
]
i+ 1

2
ed

= (φxd,i+
1

2
ed

)/(
ρi + ρi+ed

2
). (4.18)

For irregular faces, we use an interpolation operator I
i+ 1

2
ed

fc
to move data from face-centers

to face-centroids, see (3.12) and (3.13).

MAC-Projection

Our face-centered MAC projection operator does the following

u∗,d
i+ 1

2
ed

= Pmac
ρ

(

u∗,d
i+ 1

2
ed

)

. (4.19)

We use the face-centered, discrete operators to define the MAC-projection

Pmac
ρ ≡ I − 1

ρ
Gmac[Dmac · 1

ρ
Gmac]−1Dmac· (4.20)

The first step is to compute the MAC-divergence of (4.14) and then solve a variable coeffi-

cient (see Section 3.3.2) elliptic equation for φi given boundary conditions on φ (see Section
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2.2.2),

Dmac · [ 1

ρ
i+ 1

2
ed

Gmacd φi] = Dmac · [u∗,d
i+1

2
ed

]. (4.21)

We subsequently solve for the divergence-free advective velocities

ud
i+1

2
ed

= u∗,d
i+1

2
ed

− [
Gmac,dφ

ρ
]
i+1

2
ed
. (4.22)

4.2.2 Cell-Centered Projections

Now our Hodge decomposition of the cell-centered velocities is

~u∗i = ~ui + [
∇φ
ρ

]i. (4.23)

Below we define the cell-centered discretizations needed to define our cell-centered projection

operator.

Average Cell to Face

In what follows we need to interpolate the cell-centered ~w∗
i

(advective components

only) using a second-order accurate interpolant to face centers (A), then second-order to

face centroids (I),

w∗,d

i+ 1

2
ed

= I
i+ 1

2
ed

fc
(AC→F (~w∗)) (4.24)

So we need to define our averaging operator to move data from cell-centers to face-centers

[AC→Fψ]
i+ 1

2
ed

≡ ψi + ψi+ed

2
. (4.25)
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Cell-Centered Gradient

In what follows we also need to define Gcc[ψ]i. For component d, the cell-centered

gradient is

Gccd [ψ]i =
Gmacd [ψ]

i+ 1

2
ed

+Gmacd [ψ]
i− 1

2
ed

2
, (4.26)

where the face-centered gradients for un-covered faces are computed by (4.17). For covered

faces, we extrapolate to the covered face center by using uncovered values, i.e. (4.17). For

regular control volumes this procedure reduces to a traditional centered difference.

Cell-Centered Projection

Here we are solving a similar problem as in the MAC case. To do this, we average

cell-centered velocities to faces, apply the MAC projection, and average the gradient field

back to cell centers. Our cell-centered projection operator does the following

~ui = Pcc
ρ

(

~w∗
i

)

. (4.27)

Now we define our cell-centered projection.

Pcc
ρ ≡ I − Qcc

ρ (4.28)

Qcc
ρ ≡ 1

ρ
Gcc[Dmac · 1

ρ
Gmac]−1

[

Dmac ·AC→F

]

(4.29)

and where AC→F is an averaging operator that moves data from cell-centers (C) to face-

centers (F).

Note, that the cell-centered projection uses a MAC-projection to obtain the face-

centered gradient, which we then use to compute Gcc. Also note that we use homogeneous
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solid-wall boundary conditions for Dmac. We use homogeneous Neumann boundary con-

ditions for φ on solid-wall boundaries. These boundary conditions lead to a consistent

discretization of (2.17)-(2.21), as discussed in [64].

Filtering Divergent Velocity Modes

Since our cell-centered approximate projection methods (see Section 4.2.2) have

a null space where divergent velocity fields can exist [89], we damp those modes with a

divergence sensitive filter:

~un+1
i

:= ~un+1
i

+ λGD~un+1
i

(4.30)

We discretize the divergenceD using a face-centered discretization, and the gradientG using

a cell-centered discretization, with λ as a damping coefficient. GD is an approximation of

the matrix-valued operator ∂xi
∂xj

. This is algebraically equivalent to a projection in which,

instead of solving an elliptic equation, only one Jacobi iteration is taken toward the solution

from a zero starting point.

4.3 Advection Details

Here we present a second-order accurate and stable Godunov methodology for

computing discrete approximations to advective terms: (2.35), (2.36), and (2.37). This is

an extension of [31] to the incompressible Navier-Stokes equations. To do this we:

1. Extrapolate the advective normal velocities to face centers at tn+ 1

2

2. MAC-project the advective normal velocities to obtain divergence-free advective ve-

locities
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3. Extrapolate the remaining tangential velocities, ρ and s to face centers at tn+ 1

2

4. Compute the advective terms as a combination of stable and conservative approxima-

tions

4.3.1 Extrapolate Advective Velocities to Face Centers at n + 1
2

We describe the Godunov methodology used to compute second-order accurate

approximations to the advective velocities. The method is a characteristic extrapolation

procedure. For a given scalar s we extrapolate, in direction d, to the low (L) side of the

i + 1
2ed face center and at time n+ 1

2 , by

s̃
L,n+ 1

2

i+ 1

2
ed

= sni +
∆xd

2

∂s

∂xd

∣

∣

∣

∣

n

i

+
∆t

2

∂s

∂t

∣

∣

∣

∣

n

i

. (4.31)

This is a Taylor expansion in time and space. Similarly for component c of the velocity we

extrapolate in the d-direction to the low (L) side of the i + 1
2ed face center,

ũ
L,n+ 1

2

d′,i+ 1

2
ed

= und′,i +
∆xd

2

∂ud′

∂xd

∣

∣

∣

∣

n

i

+
∆t

2

∂ud′

∂t

∣

∣

∣

∣

n

i

, (4.32)

and on the high (H) side of the i − 1
2ed face center,

ũ
H,n+ 1

2

d′,i− 1

2
ed

= und′,i −
∆xd

2

∂ud′

∂xd

∣

∣

∣

∣

n

i

+
∆t

2

∂ud′

∂t

∣

∣

∣

∣

n

i

. (4.33)

Since we are extrapolating advective components only, we evaluate (4.32) and (4.33) with

d′ = d. We approximate spatial derivatives in direction d by,

∂ud
∂xd

∣

∣

∣

∣

n

i

≈
(

ud
)lim,4

xd,i
, (4.34)

where the limited slopes are defined in Section 4.3.4. For these advective component ex-

trapolations we define preliminary advective velocities by interpolating to face centers

~upre
i+ 1

2
ed

= Ii

i+ 1

2
ed
~uni . (4.35)
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We then approximate the time derivative term for each direction d,

∂ud
∂t

∣

∣

∣

∣

n

i

≈ Hn
i −

D
∑

d=1

ud,pre
i

(

ud
)lim,4

xd,i
. (4.36)

Where the transverse derivatives are upwinded, and

ud,ave
i

=
1

2
(ud,pre

i+ 1

2
ed

+ ud,pre
i− 1

2
ed

), (4.37)

and we define the source term of the dth component,

Hn,d
i

=
1

ρn
Ld[~un, µ]i − [

∇dp

ρ
]
n− 1

2

i
+ ~gd,n

i
. (4.38)

This yields the advective velocities on the low and high side of face centers. For covered

faces in irregular cells we extrapolate both the extrapolations, (4.32) and (4.33), and the

preliminary advective velocities (4.35) to covered faces [31].

Now we solve the Riemann problem by upwinding to choose the state for each

direction d advective velocity,

ũ
n+ 1

2

d,i+ 1

2
ed

= R(ũ
L,n+ 1

2

d,i+ 1

2
ed
, ũ

H,n+ 1

2

d,i+ 1

2
ed
, upre

d,i+ 1

2
ed
, d), (4.39)

where R is defined in (4.59).

We MAC-project ~̃u
n+ 1

2

i+ 1

2
ed

, this results in a divergence-free ~uADV
i+ 1

2
ed

advective velocity

field

~uADV
i+ 1

2
ed

= Pmac
ρ (ũ

n+ 1

2
,d

i+ 1

2
ed

). (4.40)

4.3.2 Extrapolate Remaining Quantities to Face Centers at n + 1
2

We are now in a position to extrapolate the remaining quantities to half time at

face centers. We do this similarly to how we extrapolated the advective velocities. But,
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now we use the divergence-free advective velocities at face centroids, with a non-conservative

(but stable) discretization of the advective terms in the time derivative approximation. Here

we present the method for a generic scalar s, which will represent the tangential velocities,

or scalars that we are advecting with the flow. We approximate the spatial derivatives in

(4.31) using our limited spatial derivatives method, see (4.57),

∂s

∂xd

∣

∣

∣

∣

n

i

≈ slim,4xd,i
. (4.41)

For the time derivative we use the divergence-free face-centered advective velocities

∂s

∂t

∣

∣

∣

∣

n

i

≈ Hn
i −

D
∑

d=1

ud,ave
i

slim,4xd,i
. (4.42)

Where the transverse derivatives are upwinded, and

ud,ave
i

=
1

2
(ud,ADV

i+ 1

2
ed

+ ud,ADV
i− 1

2
ed

), (4.43)

and we define the source term,

Hn
i = L[sn, ks]i +Hn

s,i. (4.44)

For covered faces in irregular cells we extrapolate both the extrapolations, (4.31), high or

low, depending on what is needed), and the advective velocities to covered faces using the

method of [31].

Subsequently we solve a Riemann problem using the divergence-free face-centered

velocities ~uADV
i+1

2
ed

,

s̃
n+ 1

2

i+ 1

2
ed

= R(s̃
L,n+ 1

2

i+ 1

2
ed
, s̃
H,n+ 1

2

i+ 1

2
ed
,
(

ud
)ADV

i+1

2
ed

, d), (4.45)
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where R is defined in (4.59). For tangential velocities at face centers (including covered

faces) we enforce a divergence-free condition by correcting with the mac-gradients (ud
′

i+ 1

2
ed

=

u∗,d
′

i+ 1

2
ed

− [ ∇
d′φ

ρn+1
2

]
i+ 1

2
ed

). Now we have s̃
n+ 1

2

i+ 1

2
ed

at regular, irregular, and needed covered face

centers.

4.3.3 Compute Advective Terms

Since the advective velocities are exactly discretely divergence-free, i.e.

Dmac · ~u = 0, (4.46)

then the discrete analog of

(~u · ∇)c = ∇ · (c~u) = ∇ · ~F (4.47)

is true. We will proceed by selectively using (4.47) to conservatively discretize the advective

terms (2.35), (2.36), and (2.37). Following [31], we compute a stable (S) hybridization of

conservative (C) and non-conservative (NC) divergences,

(D · ~F )S,NC
i

= κi(D · ~F )Ci + (1 − κi)(D · ~F )NCi (4.48)

where

(D · ~F )NCi =
1

∆xd

∑

±=+,−

D
∑

d=1

±~F
i+ 1

2
ed (4.49)

and where (D · ~F )C
i

is defined below. Note that for (4.49) we use covered face values for

faces with zero apertures. The covered face values are obtained by extrapolating from the

interior as in [31].

For velocity at irregular control volumes and for scalars at all control volumes we

define (D · ~F )C
i

using the flux based divergence of (3.7). For velocity component d′ at regular
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control volumes we define (D · ~F )C
i

as follows:

(D · ~F )Ci =
D

∑

d=1

[~ud,i+ 1

2
ed + ~ud,i− 1

2
ed

2

(

~ud′,i+ 1

2
ed − ~ud′,i− 1

2
ed

∆xd

)

]

. (4.50)

Notice that κ in the denominator of (3.7) cancels with the κ of (4.48), eliminating small κ

division issues.

A non-stable (NS) but conservative update for density would be

ρn+1,NS,C
i

= ρni − ∆t(D · ~F )Ci , (4.51)

while a stable but non-conservative update would be

ρn+1,S,NC
i

= ρni − ∆t(D · ~F )S,NC
i

. (4.52)

We would like to update with (4.52), but we need to account for the missing mass. The

missing mass is (4.51) minus (4.52) scaled by the volume, and using (4.48) is

δMi = ∆t|Vi|(1 − κi)

[

(D · ~F )NCi − (D · ~F )Ci

]

. (4.53)

To enforce exact mass conservation, we use volume weighted redistribution of this mass to

neighboring control volumes

ρn+1,S,C
i
′ = ρn

i
′ − ∆t(D · ~F )S,NC

i
′ +

κi
′

∑

i
′′∈N(i) κi

′′

δMi

|Vi
′ | (4.54)

or

(D · ~F )S,C
i
′ = (D · ~F )S,NC

i
′ − κi

′

∑

i
′′∈N(i) κi

′′

δMi

|Vi
′ |∆t . (4.55)

More generally (for velocity too),

(D · ~F )S,C
i
′ = (D · ~F )S,NC

i
′ − 1

∑

i
′′∈N(i) κi

′′

κi(1 − κi)

[

(D · ~F )NCi − (D · ~F )Ci

]

. (4.56)

Where i
′ ∈ N(i), and where N(i) is a set of indices whose components differ from those of

i by no more than one and can be reached by a monotonic path.
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4.3.4 Limited Slope Computation

Here we define the limited slope operator in direction d, used in (4.34), (4.36),

(4.41), and (4.42). The second-order accurate slope calculation is

ψlim,2xd,i
=























sign(ψi+ed
−ψi−ed

)min(2|ψi+ed
−ψi |,2|ψi−ψi−ed

|, 1
2
|ψi+ed

−ψi−ed
|)

∆xd
b > 0,

0 b ≤ 0

(4.57)

where

b = (ψi+ed
− ψi) · (ψi − ψi−ed

). (4.58)

The fourth order accurate slope calculation is as in [31].

4.3.5 Upwinding

Our Riemann solution in (4.39) and (4.45) is simple upwinding,

R(ψL
i+ 1

2
ed
, ψH

i+ 1

2
ed
, ud,i+ 1

2
ed
, d) =











































ψL
i+ 1

2
ed

if ud,i+ 1

2
ed
> 0,

ψH
i+ 1

2
ed

if ud,i+ 1

2
ed
< 0,

1
2(ψL

i+ 1

2
ed

+ ψH
i+ 1

2
ed

) if ud,i+ 1

2
ed

= 0.

(4.59)
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Chapter 5

The Incompressible Navier-Stokes

Equations with AMR

In this Section we describe an extension of the single-grid algorithm given in Chap-

ter 4 to the case of block-structured adaptive mesh refinement (AMR). Our approach will be

to express the AMR discretizations in terms of the corresponding uniform grid discretiza-

tions at each level. An appropriate interpolation operator provides ghost cell values for

points in the stencil extending outside of the grids at that level. We will also define a

conservative discretization of the needed operators on multilevel data.

For this research we have imposed the following constraint: the embedded bound-

ary interface cannot cross the coarse-fine interface. This additional constraint is for ease of

implementation and will be relaxed in future research, similar to [31]. A further constraint

imposed for this research is that all AMR levels are advanced with the same time step, i.e.

we are not sub-cycling the levels as is done in [1, 72]. In the AMR research community,
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methods that do not subcycle AMR levels are termed composite methods, and as such,

“mass” conservation is easily maintained with a flux based approach.

5.1 Introduction to Block-Structured AMR

In adaptive methods, one adjusts the computational effort locally to maintain a

uniform level of accuracy throughout the problem domain. Refined regions are organized

into rectangular patches, as in Figure 5.1. Refinement is possible in both space and time

(though for this work all levels use the same time step). AMR allows the simulation of

a range of spatial and temporal scales. Capturing these ranges is critical to accurately

modeling multiscale transport complexities such as boundaries, fronts, and mixing zones

that exist in natural environments. We maintain accuracy and strict conservation with

embedded boundaries and AMR. Three basic requirements are necessary to maintain con-

servation and accuracy with AMR: 1) match fluxes (see Figure 5.2) conservatively at coarse

fine interfaces (this leads to a refluxing step for the coarse levels); 2) use interpolation to

provide ghost cell values for points in the stencil extending outside of the grids at that level

(see Figure 5.3); 3) conservatively coarsen and refine data when regridding.

5.2 EB AMR Notation

We define a coarsening operator by Cr : Z
D → Z

D,

Cr(i) = (⌊ i0
r
⌋, ..., ⌊ id−1

r
⌋) (5.1)
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Figure 5.1: Block structured adaptive mesh refinement

Figure 5.2: Flux matching at coarse-fine interfaces
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Figure 5.3: Quadratic coarse fine interpolation used for elliptic and parabolic solves

where r is a positive integer. These operators acting on subsets of Z
D can be extended

in a natural way to the face-centered sets: Cr(Γe
d
) ≡ (Cr(Γ))e

d
. We use a finite-volume

discretization of space to represent a nested hierarchy of grids that discretize the same

continuous spatial domain. We assume that our problem domain can be discretized by a

nested hierarchy of grids Γ0...Γlmax, with Γl+1 = C−1
nl

ref

(Γl). and that the mesh spacings hl

associated with Γl satisfy hl

hl+1 = nlref . The integer nlref is the refinement ratio between

level l and l + 1. These conditions imply that the underlying continuous spatial domains

defined by the control volumes are all identical. In this paper we will further assume nlref

is even and no less than 2. For any set Υ ⊆ Γl, we define G(Υ, r), r > 0, to the set of all

points within a | · |-distance r of Υ that are still contained in Γl

G(Υ, r) = Γl ∩ ∪
|i|≤r

Υ + i (5.2)
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where |i| = max
d=0...D−1

(|id|), We can extend the definition to the case r < 0

G(Υ, r) = Γl − G(Γl − Υ,−r) (5.3)

Thus G(Υ, r) consists of all of the points in Υ that are within a distance −r from points

in the complement of Υ in Γl. In the case that there are periodic boundary conditions in

one or more of the coordinate directions, we think of the various sets appearing here and in

what follows as consisting of the set combined with all of its periodic images for the purpose

of defining set operations and computing ghost cell values. For example, G(Υ, r) is obtained

by growing the union of Υ with its periodic images, and performing the intersections and

differences with the union of Γl with its periodic images.

We make two assumptions about the nesting of grids at successive levels. We

require the control volume corresponding to a cell in Ωl−1 is either completely contained

in the control volumes defined by Ωl or its intersection has zero volume. We also assume

that there is at least nlref level l cells separating level l + 1 cells from level l − 1 cells:

G(Cnl
nref

(Ωl+1), nlref ) ⊆ Ωl. We will refer to grid hierarchies that meet these two conditions

as being properly nested.

From a formal numerical analysis standpoint, a solution on an AMR hierarchy

{Ωl}lmax

l=0 approximates the exact solution to the PDE only on those cells that are not

covered by a grid at a finer level. We define the valid region of Ωl as,

Ωl
valid = Ωl − Cnl

ref
(Ωl+1). (5.4)

A composite array ψcomp is a collection of discrete values defined on the valid regions at

each of the levels of refinement.

ψcomp = {ψl,valid}lmax

l=0 , ψl,valid : Ωl
valid → R

m (5.5)
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We can also define valid regions and composite arrays for face-centered variables.

Ωl,ed

valid = Ωl,ed − Cnl
ref

(Ωl+1,ed
). Thus, Ωl,ed

valid consists of d-faces that are not covered by the

d-faces at the next finer level. A composite vector field ~F comp = {~F l,valid}lmax

l=0 is defined as

follows.

~F l,valid = (F l,valid0 . . . F l,valid
D−1 ) , F l,validd : Ωl,ed

valid → R (5.6)

Thus a composite vector field has values at level l on all of the faces not covered by faces

at the next finer level.

5.3 Hyperbolic Equations

As in Section 3.4, we use the explicit hyperbolic methodology developed in [31, 83],

with the same minor deviations for incompressible flow outlined in Section (4.3). Specifi-

cally, we use the single level hyperbolic methodology with flux matching at the coarse-fine

interface, and conservative linear interpolation from coarse levels to fine ghost cells.

5.4 Elliptic and Parabolic Equations

We extend our single-grid solution methodology [92] for solving (3.8), (3.20), and

(3.25) by using essentially the same second-order accurate (non-EB) AMR elliptic algorithm

as is outlined in [71, 72]. The algorithm pseudo-code is in Figures 5.4-5.6. Note that when

we use our line-solver as a multigrid smoother, our additional requirement is that our disjoint

box layout have one box per (connected) line per level (with as many grids in the horizontal

as needed), and we impose homogeneous boundary conditions at the coarse-fine interface.
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Rinitial := ρ− L(φinitial)

while (||R|| > ǫ||Rinitial||)

VCycleMG(lmax)

R := ρ− L(φ)

end while

Figure 5.4: Pseudo-code description of the locally-refined multigrid algorithm.

The smoothing operator mgRelax(φf , Rf , r) performs a multigrid V-cycle itera-

tion on φf for the operator Lnf , assuming the coarse-grid values required for the boundary

conditions are identically zero. Within mgRelax() our LevelSmoother() is either colored

Gauss-Siedel or (for anisotropic mesh spacing) the line solver from Figure A.1, which we

apply twice per smooth (in Figure 5.6 we set NumSmoothDown = NumSmoothUp = 4).

5.5 The Incompressible Navier-Stokes Equations

We extend our single-grid solution methodology (see Chapter 4) for solving the

incompressible Navier-Stokes equations, by extending the remaining operators (those not

outlined in Sections 5.3 and 5.4) in a conservative and second-order accurate manner. The

AMR INS pseudo-code is nearly identical to the single-grid algorithm (see Section 4.1) with

the exception of regridding and coarse-fine boundary conditions. Specifically, we match

fluxes at coarse-fine interfaces (e.g. in the MAC-projection), and use conservative coarsening
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Procedure VCycleMG(level l):

if (l = lmax) then Rl := ρl − Lnf (φl, φl−1)

if (l > 0) then

φl,save := φl on Ωl

el := 0 on Ωl

mgRelax(el, Rl, nl−1

ref )

φl := φl + el

el−1 := 0 on Ωl−1

Rl−1 := Average(Rl − Lnf (el, el−1)) on C
n

l−1

ref

(Ωl)

Rl−1 := ρl−1 − Lcomp,l−1(φ) on Ωl−1 − C
n

l−1

ref

(Ωl)

VCycleMG(l − 1)

el := el + Ipwc(e
l−1)

Rl := Rl − Lnf,l(el, el−1)

δel := 0 on Ωl

mgRelax(δel, Rl, nl−1

ref )

el := el + δel

φl := φl,save + el

else

solve Lnf (e0) = R0 on Ω0.

φ0 := φ0 + e0

end if

Figure 5.5: Pseudo-code description of the AMR multigrid v-cycle algorithm.
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procedure mgRelax(φf , Rf , r)

{

for i = 1, . . . , NumSmoothDown

LevelSmoother(φf , Rf )

end for

if (r > 2) then

δc := 0

Rc := Average(Rf − Lnf (φf , φc ≡ 0))

mgRelax(δc, Rc, r/2)

φf := φf + Ipwc(δ
c)

for i = 1, . . . , NumSmoothUp

LevelSmoother(φf , Rf )

end for

end if

}

Figure 5.6: Recursive relaxation procedure.
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and refinement when regridding. Recall that for this research we do not permit the coarse-

fine interface to cross the embedded boundary, and we do not subcycle the AMR levels (to

maintain consistent CFL numbers on each level) as is done in [1, 72].

A pseudo-code description of our composite EB AMR INS algorithm is presented

in figure 5.7. For the PiecewiseLinearFillPatch() function we do linear interpolation based

on coarse data to fine ghost cells (as in [1, 72]). For the ExtrapToFacesAtHalfTime() func-

tion we use our single level infrastructure from Section 4.3. Our discrete composite (comp)

operator Pmac,comp is the multilevel analog to the single level Pmac operator. Pmac,comp

maintains conservation at coarse-fine interfaces by setting the coarse flux equal to the aver-

age of the fine fluxes (as in figure 5.2). The Hyperbolic() function computes the advective

terms by level, as in Section 4.3. Our CompositeParabolic() function is as in Section 3.3.3

except we use coarse-fine interpolation and refluxing methodology to couple the levels (see

Figures 5.2 and 5.3). The Pcc,comp is related to the Pmac,comp in the same way as for the

single level solves (where we interpolate data back and forth between cell- and face-centers).

In our Regrid() step we tag control-volumes (e.g. based on vorticity magnitude and den-

sity gradients), cluster the tags into disjoint blocks (using [17]), and copy or conservatively

linearly-interpolate the old data to the new data-structures (as in [1, 72]).
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Initialize(~u0, ρ0,∇p− 1

2 )

for n = 0, . . . , NumTimeSteps

{

PiecewiseLinearFillPatch(ρn)

PiecewiseLinearFillPatch(~un)

for l = 0, . . . , lmax

{

~̃un+ 1

2
,l = ExtrapToFacesAtHalfTime(~un,l, [∇pρ ]n−

1

2
,l)

}

~uADV = Pmac,comp(~̃un+ 1

2 )

for l = 0, . . . , lmax

{
[

A[~u]n+ 1

2
,l, A[ρ]n+ 1

2
,l
]

= Hyperbolic(~un,l, ~uADV,l, ρn,l, [∇pρ ]n−
1

2
,l)

}

ρn+1 = ρn − ∆tA[ρ]n+ 1

2

~u∗ = CompositeParabolic(~un, A[~u]n+ 1

2 , [∇pρ ]n−
1

2 )

[

~un+1, [∇pρ ]n+ 1

2

]

= Pcc,comp(~u∗, ρn+ 1

2 , [∇pρ ]n−
1

2 )

Regrid()

}

Figure 5.7: Pseudo-code description of the adaptive incompressible Navier-Stokes algorithm.
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Chapter 6

Results

This chapter demonstrates the accuracy of the method for solving environmental

flows. To test accuracy we have selected a series of test problems. The test problems build

in difficulty starting with a sphere driven cavity, then a trapped vortex ring, followed by the

classic flow past a sphere problem. Subsequently we test the method by simulating complex

variable density flows, and finally we test the method on wind driven circulations in Lake

Tahoe, USA.

As mentioned in Section 1.3.4, this work was implemented within, and extended

the Chombo [32] adaptive mesh refinement framework. Chombo provides the necessary

data structures to implement the highly complex adaptive algorithms required for solving

the incompressible Navier-Stokes equations in irregular domains. Chombo builds and exe-

cutes on a range of computational platforms, from laptops to parallel supercomputers. The

calculations presented in this Chapter were computed in parallel using SPMD style pro-

gramming, with multiblocked levels. In this paradigm each decomposition block is assigned
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to a parallel processor, communicating ghost cell information as needed via MPI.

6.1 Accuracy Measures

To test the convergence properties of the method, we conduct convergence studies.

Since all of our test problems do not have known solutions, we conduct convergence studies

using at least 3 sets of grids (coarse, medium, and fine), and compute errors between grids

(coarse compared to medium, medium compared to fine). We then can compute norms of

these errors, and subsequently the convergence rate of the method for the particular test

problem and norm (as in [9, 1, 31]).

We compute volume weighted p-norms as follows:

Lp ≡ ‖e‖p =
1

|Ω|
(

∑

l

∑

i∈Ωl
valid

|ei|p|V l
i |

)1/p
, (6.1)

where |Ω| is the volume of the flow domain, and |V l
i
| are the individual control volume

magnitudes for level l, see (3.1). When comparing fine (ef ) and coarse (ec) errors, we

compute convergence rates as follows:

rp =
log(

‖ef‖p

‖ec‖p
)

log(2)
(6.2)

The expected solution error convergence rates for this method are r1 = 2, r2 = 1.5

and r∞ = 1, as in [31].

6.2 Sphere Driven Cavity

To test the convergence properties of our constant density incompressible Navier-

Stokes algorithm (using DWPM1 from Section 4.1.4), we simulate the 3D evolution of the
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flow field within a rigidly rotating sphere, as in Figure 6.1. The sphere has a radius of 0.5

[m], and is centered at the origin. The rigid rotation of the sphere is around the z-axis, and

is started smoothly with a cubic polynomial as follows

~uSphere = [−y, x, 0]f(t), (6.3)

f(t) =























r
(

− 2( tT )3 + 3( tT )2
)

if t < T ,

r if t ≥ T .

(6.4)

We set r = 0.1 and T = 100, and our kinematic viscosity is ν = 1, giving an approximately

unit Reynolds number for t = 6, the stopping time for this test. We impose a no-slip

boundary condition on the sphere. This no-slip boundary condition combined with the

rigid rotation of the sphere, slowly drives the interior fluid into motion, as in Figure 6.1.

The long term state for this flow is rigid rotation of the entire fluid, with constant vorticity

parallel to the axis of rotation. In order to test the temporal accuracy of the method, we

focus our attention on early times (t = [0, 6]). We computed 4, 8, and 16 time steps for the

coarse, medium, and fine runs over this timeframe, using 64 parallel processors.

Convergence results from this calculation are presented in Tables 6.1-6.3. The

results are as we would expect (r∞ = 1, r2 = 1.5, and r1 = 2) from such a smooth problem.

The results are symmetric as is apparent by comparing the U-Velocity and V-Velocity errors

in Table 6.2.
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Figure 6.1: Sphere driven cavity. The slice is colored by u-velocity, and streamtubes aid in
visualizing the flow.

Table 6.1: Solution error convergence rates using L∞ norm: ∆xc = 1
64 = 2∆xm = 4∆xf ;

∆xc = (1.5625e− 02, 1.5625e− 02, 1.5625e− 02) = 2∆xm = 4∆xf . Isotropic mesh spacing.
A well resolved 3D viscous calculation.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 5.2068e-05 2.5166e-05 1.0489e+00

V-Velocity 5.2068e-05 2.5166e-05 1.0489e+00

W-Velocity 3.0969e-06 7.5950e-07 2.0277e+00

Pressure 2.3083e-04 6.3841e-05 1.8543e+00

Scalar-0 4.0330e-03 2.0201e-03 9.9740e-01

Scalar-1 4.0330e-03 2.0201e-03 9.9740e-01

Scalar-2 3.9233e-03 1.9653e-03 9.9734e-01

px/ρ 9.6348e-06 2.2130e-06 2.1223e+00

py/ρ 9.6348e-06 2.2130e-06 2.1223e+00

pz/ρ 6.8615e-06 1.5156e-06 2.1786e+00

X-Vorticity 1.6148e-03 9.3316e-04 7.9113e-01

Y-Vorticity 1.6148e-03 9.3316e-04 7.9113e-01

Z-Vorticity 2.7636e-03 1.6378e-03 7.5479e-01
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Table 6.2: Solution error convergence rates using L1 norm: ∆xc = 1
64 = 2∆xm = 4∆xf ;

∆xc = (1.5625e− 02, 1.5625e− 02, 1.5625e− 02) = 2∆xm = 4∆xf . Isotropic mesh spacing.
A well resolved 3D viscous calculation.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 2.7969e-06 7.9661e-07 1.8119e+00

V-Velocity 2.7969e-06 7.9661e-07 1.8119e+00

W-Velocity 4.1303e-08 8.7800e-09 2.2340e+00

Pressure 1.2735e-05 2.8007e-06 2.1850e+00

Scalar-0 5.6574e-05 1.4727e-05 1.9417e+00

Scalar-1 5.6574e-05 1.4727e-05 1.9417e+00

Scalar-2 4.6372e-05 1.1672e-05 1.9902e+00

px/ρ 2.5805e-07 2.9925e-08 3.1082e+00

py/ρ 2.5805e-07 2.9925e-08 3.1082e+00

pz/ρ 8.7864e-08 1.2874e-08 2.7708e+00

X-Vorticity 1.8025e-05 5.3106e-06 1.7631e+00

Y-Vorticity 1.8025e-05 5.3106e-06 1.7631e+00

Z-Vorticity 7.3125e-05 2.1292e-05 1.7801e+00

Table 6.3: Solution error convergence rates using L2 norm: ∆xc = 1
64 = 2∆xm = 4∆xf ;

∆xc = (1.5625e− 02, 1.5625e− 02, 1.5625e− 02) = 2∆xm = 4∆xf . Isotropic mesh spacing.
A well resolved 3D viscous calculation.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 4.6086e-06 1.3910e-06 1.7282e+00

V-Velocity 4.6086e-06 1.3910e-06 1.7282e+00

W-Velocity 9.4183e-08 2.3178e-08 2.0227e+00

Pressure 2.1915e-05 4.6073e-06 2.2499e+00

Scalar-0 3.0519e-04 1.0762e-04 1.5038e+00

Scalar-1 3.0519e-04 1.0762e-04 1.5038e+00

Scalar-2 3.0413e-04 1.0743e-04 1.5012e+00

px/ρ 5.1444e-07 6.9467e-08 2.8886e+00

py/ρ 5.1444e-07 6.9467e-08 2.8886e+00

pz/ρ 2.8836e-07 4.6898e-08 2.6203e+00

X-Vorticity 4.3166e-05 1.6638e-05 1.3755e+00

Y-Vorticity 4.3166e-05 1.6638e-05 1.3755e+00

Z-Vorticity 1.2579e-04 4.6048e-05 1.4498e+00



72

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

14

Radius [m]

u θ(r
) 

[m
/s

]

Figure 6.2: Trapped vortex: initial velocity profile.

6.3 Trapped Vortex

To further test the convergence properties of our constant density incompressible

Navier-Stokes algorithm (using DWPM1 from Section 4.1.4), we simulate the evolution of

a trapped vortex patch in a cylinder (2D), and a vortex ring in a torus (3D).

Our 2D cylinder has a unit diameter with a centered vortex patch specified by the

azimuthal velocity component around the vortex center (as in [72]):

uθ(r) =























Γ
(

8
3R5 r

4 − 5
R4 r

3 + 10
3R2 r

)

if r < R,

Γ
(

1
r

)

if r ≥ R.

(6.5)

We choose R = 0.1 [m] and Γ = 1 [m2/s], and our kinematic viscosity is ν = 0.1 [m2/s],

giving a Reynolds number of ∼ 100 based on the maximum velocity and the cylinder

diameter. The cross-section velocity profile, given by (6.5), is shown in Figure 6.2.

For the 3D test the torus has a major radius = 0.25 [m], a minor radius = 0.2
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[m], with the major-circle normal to the z-axis. We use the same velocity distribution as in

(6.5) for the torus cross-sections, except we set Γ = 0.1 [m2/s], and project. This makes a

symmetric vortex ring trapped inside the torus. See Figure 6.4 for the general layout.

Two-dimensional, viscous single level (16 processor) results are shown in Tables

6.4-6.6, along with a vorticity plot in Figure 6.3. Three-dimensional, viscous single level

(64 processor) results are shown in Tables 6.7-6.9. Three-dimensional, inviscid single level

(64 processor) results are shown in Tables 6.10-6.12. For the 2D and inviscid results our

algorithm indicates the expected accuracy. The 3D viscous results are not yet in the asymp-

totic regime. Based on these results, the results from Section 6.2, and an examination of

the convergence properties of the elliptic operators in Appendix B gives us confidence that

our algorithm is fully second order accurate with sufficient mesh refinement. The results

are also symmetric as is apparent by comparing the U-Velocity and V-Velocity errors in

Tables 6.5 and 6.8.
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Figure 6.3: Diffused vorticity for the 2D trapped vortex test problem. This is the final
time step for the finest grid of Tables 6.4-6.6. Red is counter-clockwise vorticity, blue is
clockwise.

Figure 6.4: Initial condition for the 3D trapped vortex test problem. The torus geometry
is shaded grey, slices are colored by vorticity, and streamlines aid in visualizing the flow.
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Table 6.4: Solution error convergence rates using L∞ norm: ∆xc = 1
256 = 2∆xm = 4∆xf ;

∆xc = (3.9062e − 03, 3.9062e − 03) = 2∆xm = 4∆xf . Isotropic mesh spacing. A well
resolved 2D viscous calculation.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 2.5177e-01 1.0251e-01 1.2963e+00

V-Velocity 2.5177e-01 1.0251e-01 1.2963e+00

Pressure 1.0325e+03 3.4453e+02 1.5835e+00

Scalar-0 1.0713e-03 5.6710e-04 9.1766e-01

Scalar-1 1.0713e-03 5.6710e-04 9.1766e-01

Scalar-2 1.3617e-03 6.9494e-04 9.7040e-01

px/ρ 3.1763e+02 4.3731e+01 2.8606e+00

py/ρ 3.1763e+02 4.3731e+01 2.8606e+00

Z-Vorticity 4.4310e+01 8.7482e+00 2.3406e+00

Table 6.5: Solution error convergence rates using L1 norm: ∆xc = 1
256 = 2∆xm = 4∆xf ;

∆xc = (3.9062e − 03, 3.9062e − 03) = 2∆xm = 4∆xf . Isotropic mesh spacing. A well
resolved 2D viscous calculation.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 4.0903e-03 1.1048e-03 1.8885e+00

V-Velocity 4.0903e-03 1.1048e-03 1.8885e+00

Pressure 7.8439e+01 2.3260e+01 1.7537e+00

Scalar-0 4.6003e-06 1.4196e-06 1.6963e+00

Scalar-1 4.6003e-06 1.4196e-06 1.6963e+00

Scalar-2 6.2502e-06 1.5698e-06 1.9933e+00

px/ρ 1.3965e+00 3.5600e-01 1.9719e+00

py/ρ 1.3965e+00 3.5600e-01 1.9719e+00

Z-Vorticity 6.0786e-01 1.4907e-01 2.0278e+00
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Table 6.6: Solution error convergence rates using L2 norm: ∆xc = 1
256 = 2∆xm = 4∆xf ;

∆xc = (3.9062e − 03, 3.9062e − 03) = 2∆xm = 4∆xf . Isotropic mesh spacing. A well
resolved 2D viscous calculation.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 1.4718e-02 3.9476e-03 1.8985e+00

V-Velocity 1.4718e-02 3.9476e-03 1.8985e+00

Pressure 1.2441e+02 3.8707e+01 1.6845e+00

Scalar-0 4.0995e-05 1.4135e-05 1.5362e+00

Scalar-1 4.0995e-05 1.4135e-05 1.5362e+00

Scalar-2 5.4888e-05 1.9035e-05 1.5278e+00

px/ρ 4.8248e+00 1.1805e+00 2.0311e+00

py/ρ 4.8248e+00 1.1805e+00 2.0311e+00

Z-Vorticity 2.5748e+00 5.6687e-01 2.1834e+00

Table 6.7: Solution error convergence rates using L∞ norm: ∆xc = 1
64 = 2∆xm = 4∆xf ;

∆xc = (1.5625e− 02, 1.5625e− 02, 1.5625e− 02) = 2∆xm = 4∆xf . Isotropic mesh spacing.
An under-resolved 3D viscous calculation.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 1.0792e-01 1.6430e-01 -6.0637e-01

V-Velocity 1.0792e-01 1.6430e-01 -6.0637e-01

W-Velocity 2.5021e-01 3.4778e-01 -4.7506e-01

Pressure 2.3805e+03 1.9970e+03 2.5339e-01

Scalar-0 3.9950e-03 1.9816e-03 1.0115e+00

Scalar-1 3.9950e-03 1.9816e-03 1.0115e+00

Scalar-2 3.9699e-03 1.9786e-03 1.0046e+00

px/ρ 7.8310e+01 2.5794e+02 -1.7197e+00

py/ρ 7.8310e+01 2.5794e+02 -1.7197e+00

pz/ρ 9.8096e+01 2.9420e+02 -1.5845e+00

X-Vorticity 3.3221e+01 6.2649e+01 -9.1522e-01

Y-Vorticity 3.3221e+01 6.2649e+01 -9.1522e-01

Z-Vorticity 8.7073e+00 4.0850e+00 1.0919e+00
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Table 6.8: Solution error convergence rates using L1 norm: ∆xc = 1
64 = 2∆xm = 4∆xf ;

∆xc = (1.5625e− 02, 1.5625e− 02, 1.5625e− 02) = 2∆xm = 4∆xf . Isotropic mesh spacing.
An under-resolved 3D viscous calculation.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 5.1309e-03 4.4990e-03 1.8960e-01

V-Velocity 5.1309e-03 4.4990e-03 1.8960e-01

W-Velocity 9.6873e-03 8.5772e-03 1.7560e-01

Pressure 3.8672e+02 3.2154e+01 3.5882e+00

Scalar-0 6.3171e-05 1.6931e-05 1.8996e+00

Scalar-1 6.3171e-05 1.6931e-05 1.8996e+00

Scalar-2 1.0389e-04 2.9203e-05 1.8308e+00

px/ρ 1.9535e+00 1.0531e+00 8.9146e-01

py/ρ 1.9535e+00 1.0531e+00 8.9146e-01

pz/ρ 5.5300e+00 1.5353e+00 1.8487e+00

X-Vorticity 1.0141e+00 6.0988e-01 7.3364e-01

Y-Vorticity 1.0141e+00 6.0988e-01 7.3364e-01

Z-Vorticity 5.4883e-02 2.5142e-02 1.1263e+00

Table 6.9: Solution error convergence rates using L2 norm: ∆xc = 1
64 = 2∆xm = 4∆xf ;

∆xc = (1.5625e− 02, 1.5625e− 02, 1.5625e− 02) = 2∆xm = 4∆xf . Isotropic mesh spacing.
An under-resolved 3D viscous calculation.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 1.3661e-02 1.2801e-02 9.3854e-02

V-Velocity 1.3661e-02 1.2801e-02 9.3854e-02

W-Velocity 1.9847e-02 1.7744e-02 1.6159e-01

Pressure 4.7459e+02 5.1100e+01 3.2153e+00

Scalar-0 3.4360e-04 1.2136e-04 1.5014e+00

Scalar-1 3.4360e-04 1.2136e-04 1.5014e+00

Scalar-2 4.8007e-04 1.8192e-04 1.3999e+00

px/ρ 4.5513e+00 3.5920e+00 3.4147e-01

py/ρ 4.5513e+00 3.5920e+00 3.4147e-01

pz/ρ 8.1204e+00 5.4910e+00 5.6449e-01

X-Vorticity 2.8051e+00 1.6048e+00 8.0566e-01

Y-Vorticity 2.8051e+00 1.6048e+00 8.0566e-01

Z-Vorticity 2.3705e-01 1.1168e-01 1.0859e+00
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Table 6.10: Solution error convergence rates using L∞ norm: ∆xc = 1
64 = 2∆xm = 4∆xf ;

∆xc = (1.5625e− 02, 1.5625e− 02, 1.5625e− 02) = 2∆xm = 4∆xf . Isotropic mesh spacing.
A 3D inviscid calculation.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 2.0324e-02 9.3188e-03 1.1250e+00

V-Velocity 2.0324e-02 9.3188e-03 1.1250e+00

W-Velocity 3.5406e-02 1.7446e-02 1.0211e+00

Pressure 9.6541e-02 6.3686e-02 6.0016e-01

Scalar-0 3.9152e-03 1.9584e-03 9.9941e-01

Scalar-1 3.9152e-03 1.9584e-03 9.9941e-01

Scalar-2 3.9262e-03 1.9632e-03 9.9990e-01

px/ρ 4.1635e+00 6.7358e+00 -6.9404e-01

py/ρ 4.1635e+00 6.7358e+00 -6.9404e-01

pz/ρ 2.9866e+00 4.0626e+00 -4.4387e-01

X-Vorticity 1.1350e+00 9.4669e-01 2.6171e-01

Y-Vorticity 1.1350e+00 9.4669e-01 2.6171e-01

Z-Vorticity 3.2670e-01 8.9022e-01 -1.4462e+00

Table 6.11: Solution error convergence rates using L1 norm: ∆xc = 1
64 = 2∆xm = 4∆xf ;

∆xc = (1.5625e− 02, 1.5625e− 02, 1.5625e− 02) = 2∆xm = 4∆xf . Isotropic mesh spacing.
A 3D inviscid calculation.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 9.3917e-04 2.4954e-04 1.9121e+00

V-Velocity 9.3917e-04 2.4954e-04 1.9121e+00

W-Velocity 1.8197e-03 4.8655e-04 1.9031e+00

Pressure 1.9053e-02 2.8225e-03 2.7549e+00

Scalar-0 6.2799e-05 1.5643e-05 2.0052e+00

Scalar-1 6.2799e-05 1.5643e-05 2.0052e+00

Scalar-2 1.0293e-04 2.6434e-05 1.9611e+00

px/ρ 2.8776e-01 5.0622e-02 2.5071e+00

py/ρ 2.8776e-01 5.0622e-02 2.5071e+00

pz/ρ 5.5440e-01 8.9734e-02 2.6272e+00

X-Vorticity 7.3061e-02 1.9019e-02 1.9416e+00

Y-Vorticity 7.3061e-02 1.9019e-02 1.9416e+00

Z-Vorticity 7.7648e-03 2.4323e-03 1.6746e+00
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Table 6.12: Solution error convergence rates using L2 norm: ∆xc = 1
64 = 2∆xm = 4∆xf ;

∆xc = (1.5625e− 02, 1.5625e− 02, 1.5625e− 02) = 2∆xm = 4∆xf . Isotropic mesh spacing.
A 3D inviscid calculation.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 1.4487e-03 4.3528e-04 1.7347e+00

V-Velocity 1.4487e-03 4.3528e-04 1.7347e+00

W-Velocity 2.7949e-03 8.0503e-04 1.7957e+00

Pressure 2.5498e-02 4.1286e-03 2.6267e+00

Scalar-0 3.4337e-04 1.2102e-04 1.5045e+00

Scalar-1 3.4337e-04 1.2102e-04 1.5045e+00

Scalar-2 4.7969e-04 1.8141e-04 1.4028e+00

px/ρ 4.4298e-01 8.6189e-02 2.3617e+00

py/ρ 4.4298e-01 8.6189e-02 2.3617e+00

pz/ρ 7.7711e-01 1.3892e-01 2.4839e+00

X-Vorticity 1.4829e-01 3.8058e-02 1.9622e+00

Y-Vorticity 1.4829e-01 3.8058e-02 1.9622e+00

Z-Vorticity 1.5044e-02 4.6584e-03 1.6913e+00
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6.4 Flow Past a Cylinder/Sphere

Now we test our constant density incompressible Navier-Stokes method with AMR

and anisotropic mesh spacing (using our adaptive version of DWPM1 from Section 4.1.4).

We simulate flow past a sphere, a classic problem from fluid mechanics. The Reynolds

number is defined as R = UD
ν = 10 for this test problem. Where U is the far-field flow

velocity, D is the sphere diameter, and ν is the kinematic viscosity.

Two-dimensional, unit aspect ratio, 8 processor, AMR results are shown in Tables

6.13-6.15. Two-dimensional, 4:1 aspect ratio, AMR results are shown in Tables 6.16-6.18.

Note that these results use our higher-order accurate Dirichlet EB stencil for the viscous

operators. We have observed a connection between the poor behavior of our pressure

gradient errors and the higher-order stencil. The results of Sections 6.3 and 6.5.2 test the

algorithm with the lower-order Dirichlet EB stencil and confirm this behavior. From the

results in these Tables our algorithm is indicating the expected accuracy.

Isotropic (∆xd = ∆xd′) 3D results are shown in Tables 6.19-6.21. Anisotropic

4:4:1 (∆xd 6= ∆xd′) 3D results are shown in Tables 6.22-6.24. It is clear that we are not in

the asymptotic regime for this 3D problem. These 3D results combined with the 2D results,

and the results from Sections 6.2-6.3 give us confidence that our 3D algorithm is giving us

the expected accuracy in the asymptotic limit of decreasing mesh spacing.
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Table 6.13: Solution error convergence rates using L∞ norm: hf = 1
64 and hc = 2hf ; AMR

nref = 4 with 4 levels . Isotropic mesh spacing. A 2D viscous calculation.

Variable Coarse Error Fine Error Order

velocity0 1.134043e+01 2.520019e+00 2.169968e+00

velocity1 7.718079e+00 1.820990e+00 2.083519e+00

pressure 4.116954e+07 8.985082e+06 2.195974e+00

scalar1 1.517485e-02 4.716579e-03 1.685870e+00

px/ρ 1.301402e+07 3.342936e+07 -1.361049e+00

py/ρ 2.525169e+07 8.556613e+07 -1.760660e+00

z-Vorticity 9.128578e+04 1.996422e+04 2.192974e+00

Table 6.14: Solution error convergence rates using L1 norm. hf = 1
64 and hc = 2hf ; AMR

nref = 4 with 4 levels . Isotropic mesh spacing. A 2D viscous calculation.

Variable Coarse Error Fine Error Order

velocity0 1.186156e-02 2.903117e-03 2.030619e+00

velocity1 9.707874e-03 2.397566e-03 2.017585e+00

pressure 3.990522e+06 6.852523e+05 2.541871e+00

scalar1 9.028065e-04 2.401360e-04 1.910565e+00

px/ρ 1.757296e+04 3.586594e+03 2.292671e+00

py/ρ 1.545766e+04 2.956564e+03 2.386328e+00

z-Vorticity 9.970603e+00 1.790908e+00 2.476989e+00

Table 6.15: Solution error convergence rates using L2 norm. hf = 1
64 and hc = 2hf ; AMR

nref = 4 with 4 levels . Isotropic mesh spacing. A 2D viscous calculation.

Variable Coarse Error Fine Error Order

velocity0 6.242005e-02 1.458440e-02 2.097584e+00

velocity1 4.208083e-02 9.503073e-03 2.146697e+00

pressure 5.196020e+06 8.734079e+05 2.572679e+00

scalar1 2.796191e-03 7.024019e-04 1.993094e+00

px/ρ 6.594240e+04 4.774662e+04 4.658079e-01

py/ρ 8.511134e+04 1.016273e+05 -2.558643e-01

z-Vorticity 4.179723e+02 6.649610e+01 2.652066e+00
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Table 6.16: Solution error convergence rates using L∞ norm: ∆xc = 1
16 = 2∆xm = 4∆xf ;

∆xc = (3.1250e− 02, 3.1250e− 02) = 2∆xm = 4∆xf ; a 2D viscous calculation with 3 AMR
levels having nref = 4. Isotropic mesh spacing.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 6.4016e+00 1.8093e+00 1.8230e+00

V-Velocity 4.9507e+00 1.2994e+00 1.9297e+00

Pressure 2.3760e+06 3.4213e+05 2.7959e+00

Scalar 4.1617e-02 2.3277e-02 8.3829e-01

px/ρ 9.5118e+04 2.3222e+05 -1.2877e+00

py/ρ 1.8352e+05 4.6472e+05 -1.3404e+00

Z-Vorticity 4.5703e+03 9.5683e+02 2.2559e+00

Table 6.17: Solution error convergence rates using L1 norm: ∆xc = 1
16 = 2∆xm = 4∆xf ;

∆xc = (3.1250e− 02, 3.1250e− 02) = 2∆xm = 4∆xf ; a 2D viscous calculation with 3 AMR
levels having nref = 4. Isotropic mesh spacing.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 2.4871e-02 4.4748e-03 2.4746e+00

V-Velocity 2.3543e-02 5.1497e-03 2.1927e+00

Pressure 3.2395e+05 2.5091e+04 3.6905e+00

Scalar 1.8842e-03 4.8485e-04 1.9583e+00

px/ρ 1.1697e+03 1.5246e+02 2.9396e+00

py/ρ 8.0536e+02 9.3514e+01 3.1064e+00

Z-Vorticity 8.1307e+00 1.4680e+00 2.4696e+00

Table 6.18: Solution error convergence rates using L2 norm: ∆xc = 1
16 = 2∆xm = 4∆xf ;

∆xc = (3.1250e− 02, 3.1250e− 02) = 2∆xm = 4∆xf ; a 2D viscous calculation with 3 AMR
levels having nref = 4. Isotropic mesh spacing.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 1.2722e-01 2.8571e-02 2.1547e+00

V-Velocity 8.7780e-02 1.8550e-02 2.2425e+00

Pressure 4.1739e+05 3.2361e+04 3.6891e+00

Scalar 6.2881e-03 1.9745e-03 1.6711e+00

px/ρ 1.9105e+03 5.2372e+02 1.8671e+00

py/ρ 1.9859e+03 6.7675e+02 1.5531e+00

Z-Vorticity 9.5604e+01 1.0532e+01 3.1823e+00
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Table 6.19: Solution error convergence rates using L∞ norm: hc = 1
32 = 2hm = 4hf ; a 3D

viscous calculation.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 2.4454e+01 7.2745e+00 1.7492e+00

V-Velocity 8.3777e+00 1.5826e+01 -9.1768e-01

W-Velocity 8.3777e+00 1.5826e+01 -9.1768e-01

Pressure 2.9432e+05 4.6078e+05 -6.4669e-01

Scalar 1.0824e-01 5.3912e-02 1.0055e+00

px/ρ 4.7156e+04 1.1739e+05 -1.3158e+00

py/ρ 8.7238e+04 5.8004e+05 -2.7331e+00

pz/ρ 8.7238e+04 5.8004e+05 -2.7331e+00

X-Vorticity 4.6583e+02 1.2122e+03 -1.3797e+00

Y-Vorticity 2.8827e+03 1.1753e+03 1.2944e+00

Z-Vorticity 2.8827e+03 1.1753e+03 1.2944e+00

Table 6.20: Solution error convergence rates using L1 norm: hc = 1
32 = 2hm = 4hf ; a 3D

viscous calculation.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 1.0689e-01 3.4822e-02 1.6181e+00

V-Velocity 4.4420e-02 1.4482e-02 1.6170e+00

W-Velocity 4.4420e-02 1.4482e-02 1.6170e+00

Pressure 1.7750e+04 1.2839e+04 4.6723e-01

Scalar 1.8962e-04 5.2633e-05 1.8491e+00

px/ρ 9.1412e+01 7.1387e+01 3.5672e-01

py/ρ 5.4115e+01 6.0387e+01 -1.5822e-01

pz/ρ 5.4115e+01 6.0387e+01 -1.5822e-01

X-Vorticity 3.6631e-01 2.6211e-01 4.8291e-01

Y-Vorticity 3.5284e+00 1.4344e+00 1.2986e+00

Z-Vorticity 3.5284e+00 1.4344e+00 1.2986e+00
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Table 6.21: Solution error convergence rates using L2 norm: hc = 1
32 = 2hm = 4hf ; a 3D

viscous calculation.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 3.1787e-01 1.2120e-01 1.3911e+00

V-Velocity 1.1361e-01 7.5938e-02 5.8122e-01

W-Velocity 1.1361e-01 7.5938e-02 5.8122e-01

Pressure 2.2758e+04 1.6582e+04 4.5675e-01

Scalar 1.3957e-03 4.0632e-04 1.7803e+00

px/ρ 1.9389e+02 5.8685e+02 -1.5978e+00

py/ρ 1.6036e+02 2.2072e+03 -3.7828e+00

pz/ρ 1.6036e+02 2.2072e+03 -3.7828e+00

X-Vorticity 4.7074e+00 9.1630e+00 -9.6089e-01

Y-Vorticity 2.4620e+01 1.4009e+01 8.1342e-01

Z-Vorticity 2.4620e+01 1.4009e+01 8.1342e-01

Table 6.22: Solution error convergence rates using L∞ norm: ∆xc = 1
16 = 2∆xm = 4∆xf ;

∆xc = (3.1250e−02, 3.1250e−02, 1.5625e−02) = 2∆xm = 4∆xf ; a 3D viscous calculation.
Aspect ratio: dx/dz = 2.0000e+00 and dy/dz = 2.0000e+00.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 2.1219e+01 1.8371e+01 2.0796e-01

V-Velocity 6.7553e+00 6.8038e+00 -1.0331e-02

W-Velocity 6.1780e+00 5.4981e+00 1.6821e-01

Pressure 2.4518e+05 1.5432e+05 6.6793e-01

Scalar 2.2718e-01 8.6465e-02 1.3936e+00

px/ρ 1.1648e+04 1.4950e+04 -3.6005e-01

py/ρ 1.1711e+04 1.4997e+04 -3.5679e-01

pz/ρ 1.1278e+04 1.6250e+04 -5.2697e-01

X-Vorticity 6.5421e+02 4.8398e+02 4.3480e-01

Y-Vorticity 2.2321e+03 1.8535e+03 2.6817e-01

Z-Vorticity 1.1514e+03 2.4019e+03 -1.0608e+00



85

Table 6.23: Solution error convergence rates using L1 norm: ∆xc = 1
16 = 2∆xm = 4∆xf ;

∆xc = (3.1250e−02, 3.1250e−02, 1.5625e−02) = 2∆xm = 4∆xf ; a 3D viscous calculation.
Aspect ratio: dx/dz = 2.0000e+00 and dy/dz = 2.0000e+00.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 9.3345e-02 7.8160e-02 2.5615e-01

V-Velocity 3.8943e-02 3.2503e-02 2.6077e-01

W-Velocity 4.1218e-02 3.2885e-02 3.2585e-01

Pressure 2.4353e+04 3.7301e+03 2.7068e+00

Scalar 4.4734e-04 1.2647e-04 1.8226e+00

px/ρ 1.2393e+02 3.8866e+01 1.6729e+00

py/ρ 7.1204e+01 2.5826e+01 1.4631e+00

pz/ρ 8.0233e+01 3.5804e+01 1.1641e+00

X-Vorticity 6.3006e-01 3.7817e-01 7.3646e-01

Y-Vorticity 3.8489e+00 2.7873e+00 4.6559e-01

Z-Vorticity 4.3630e+00 2.7256e+00 6.7877e-01

Table 6.24: Solution error convergence rates using L2 norm: ∆xc = 1
16 = 2∆xm = 4∆xf ;

∆xc = (3.1250e−02, 3.1250e−02, 1.5625e−02) = 2∆xm = 4∆xf ; a 3D viscous calculation.
Aspect ratio: dx/dz = 2.0000e+00 and dy/dz = 2.0000e+00.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 2.7012e-01 2.5453e-01 8.5775e-02

V-Velocity 1.1499e-01 1.0781e-01 9.2965e-02

W-Velocity 1.2823e-01 7.9341e-02 6.9254e-01

Pressure 3.1216e+04 5.4582e+03 2.5158e+00

Scalar 2.9092e-03 9.6271e-04 1.5955e+00

px/ρ 2.4777e+02 1.4697e+02 7.5346e-01

py/ρ 1.7465e+02 1.2474e+02 4.8553e-01

pz/ρ 2.0983e+02 1.7410e+02 2.6926e-01

X-Vorticity 6.2871e+00 4.6007e+00 4.5056e-01

Y-Vorticity 2.5584e+01 2.0751e+01 3.0212e-01

Z-Vorticity 3.1442e+01 2.0918e+01 5.8794e-01
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6.5 Internal Wave Generation and Dissipation

Here we test the incompressible Navier-Stokes algorithm with buoyancy forcing.

The goal is to test the accuracy of the method in simulating highly non-linear, nonBoussi-

nesq, density driven flows.

6.5.1 Internal Wave Background and Relevant Literature

Oceanic surface tides and lake motions can induce currents over topography which

in turn generate internal gravity waves that propagate along density gradients beneath the

surface.1 While the amplitude of oceanic surface waves due to the tides and lake seiches

due to wind forcing are typically less than meters, resulting internal wave amplitudes can

be larger than 100 meters, and their associated currents can alter surface characteristics

enough to make them visible from space. Their ubiquitous nature is documented in the

Global Ocean Associates Internal Wave Atlas [58], which is a compilation of satellite images

of internal waves taken from a variety of sources.

Like surface waves, internal waves propagate until they dissipate at bathymetric

boundaries, and in the oceanic context there is strong evidence in support of the idea

that internal wave breaking at boundaries results in mixed fluid which propagates out into

the ocean interior [82, 101, 40, 81], effectively preventing the ocean from turning into a

“stagnant pool of cold, salty water” [81]. Developing models for mixing induced by internal

waves is therefore paramount to accurate predictions of circulation. If improved models

for internal wave processes are to be developed, this requires an accurate understanding of

1 This Sub-Section (6.5.1) is adapted from a proposal prepared with Professor Oliver Fringer of Stanford
University.
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their physics, which includes their generation mechanisms, how they propagate and interact

with each other and bathymetry, and how they ultimately end up dissipating their energy

through breaking. The greatest impediment to the numerical simulation of internal waves

is the broad range of length scales over which they exist. This is not surprising for most

numerical simulations especially when dissipation scales are involved. However, internal

waves still present a challenging computational problem simply due to the range of scales

which govern their propagation, even if their dissipative scales are not to be captured.

Internal wave generation

Internal wave energy can exist in the form of solitary waves that propagate as

first-mode waves along the pycnocline (region of rapidly changing density). In the oceanic

context, solitary waves can be generated as a result of the interaction of barotropic tides

with steep topography, as described in the pioneering laboratory experiments of Maxworthy

[74]. Maxworthy induced an oscillatory flow over a three-dimensional hill and showed that

a quasi-steady depression is formed on the lee side of the hill during the ebb phase of the

flow, as depicted in Figure 6.5(a). At some point in the flow, the phase speed c of the

depression wave exceeds the flow speed u, and the wave begins to propagate upstream, as

shown in Figure 6.5(b). This wave continues to propagate upstream upon current reversal

and forms a train of rank-ordered solitary waves, as in Figure 6.5(c), that ride on the flood

current u.

Hibiya [53, 54] later determined that the generation process is unsteady and re-

sults from the superposition of internal wave characteristics, which was verified numerically

and experimentally by Matsuura and Hibiya [73]. In these laboratory experiments, they de-
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Figure 6.5: Schematic of the internal wave generation mechanism as described by Maxwor-
thy (1979). The variable curved line indicates the approximate pycnocline location.
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scribed the generation process as being highly dependent on the Froude number Frm = u/c,

where u is the current speed and c is the internal wave speed over the topography, and

Td = cT/2b is the ratio of the tidal timescale to the internal wave timescale over the topog-

raphy, where T is the tidal period and b is the topographic half-width. The parameter Td

determines whether waves formed during the flood phase of the tide will interact with those

formed during the ebb phase of the tide, since if Td >> 1 waves formed during the ebb phase

will be far from the generation site during the flood phase of the tide. The simulations of

Matsuura and Hibiya employed Td = O(1) in order to simulate the generation process on

Stellwagen Bank, where Td ≈ 1.5 and Frm ≈ 1.75.

First-mode solitary waves are also generated over shelf breaks in a manner similar

to the generation mechanism over sills. Lamb [65] employed two-dimensional simulations

of the shelf break at Georges Bank and showed that the generation mechanism is due to

the formation of a depression wave during supercritical off-bank flow (Frm > 1) during

the ebb tide. This leads to the formation of first- and second-mode internal wave energy

that propagates on- and off-shelf. Lamb demonstrated that rotation had a significant effect

on the generation process, since a rotational adjustment caused the formation of a second

on-bank depression after the first depression.

A classic example of lee-wave generation over a sill occurs in the Sulu Sea, between

Malaysia and the Philippines [4]. In this case there is a sill at the southern end of the Sea

with a characteristic width of 2 km, and the strong ebb tides there induce currents in

excess of 3.4 m s−1. These supercritical currents create a 5 to 10 km depression in the lee

of the sill with an amplitude of 50 to 150 m. During the weaker flood tide, this lee wave
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propagates northward into the Sulu Sea as a strong bore with a length of 50 to 90 km and an

amplitude of 50 to 90 m, with a phase speed of 2.2 m s−1. This bore breaks up into a train

of solitary waves that spreads out radially into the sea with crest lengths in excess of 350

km. Based on these length scales, Td = 84, which is much greater than the aforementioned

studies of Maxworthy [74], Hibiya [54], and Lamb [65], which is due to the extremely short

topographic length scale. This accentuates the need for adaptive mesh refinement to study

such internal waves numerically.

Propagation

Far from the generation zone, internal wave energy is predominantly in the form of

low modes, since energy in the form of higher modes usually dissipates closer to the internal

generation site. For example, low-mode internal wave energy has been observed up to 1000

km away from generation at the Hawaiian Ridge [88].

When the amplitude becomes large with respect to the wavelength, asymptotic

methods [96, 67, 43, 3, 24] break down and more complex methods must be used for their

simulation. Increased degrees of complexity that allow for mechanisms such as overturning,

steep bathymetry, mixing, or viscosity are required in order to accurately represent the

physics. This requires the solution of full hydrodynamic equation sets without asymptotic

expansions.

Dissipation and breaking

A great deal of our understanding of dissipative processes in breaking internal

waves has been achieved with laboratory experiments. Employing continuous stratification,
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Cacchione and Wunsch [22] used a first-mode wave propagating towards sloped bathymetry

to show that at the critical angle, or the angle at which the bathymetric slope matches the

angle of propagation of the internal wave beams, strong shearing motion leads to instability

and results in the formation of a series of vortices, which upon overturning mix fluid locally.

The mixed fluid then propagates into the interior of the domain along isopycnals, a process

called lateral homogenization. Other researchers have also performed similar experiments

using continuous stratification [57, 38] and found that the breaking process leads to a highly

nonlinear upslope-propagating bolus which leads to a bulk of the dissipation and mixing.

The upslope-propagating bolus was also found in the interfacial solitary wave experiments of

Helfrich [52], who studied the interaction of solitary wave packets with a uniform slope and

showed that each solitary wave generates an upslope-propagating bolus. Michallet and Ivey

[77] also observed the upslope-propagating bolus when a single solitary wave of depression

interacts with a uniform slope.

In the field, clear signatures of the interaction of highly nonlinear waves with a

shelf break and the subsequent dissipation and mixing have rarely been observed, since

they exist in the later, dissipative stages of the internal wave life cycle when turbulence

and mixing weaken detectable internal wave signatures. Recently, however, some striking

measurements of a series of bottom-trapped solitary waves of elevation have been obtained

on the Oregon Shelf by Klymak and Moum [63] and near the Massachusetts coast by Scotti

and Pineda [93]. These measurements depict trains of highly nonlinear solitary waves of

elevation that propagate along the seafloor. With high velocities near the bed, Klymak

and Moum propose that bottom stress is likely to play an important role in wave energy
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dissipation, unlike near-surface solitary waves, where shear instability at the interface is the

primary source of turbulence and dissipation [80], or progressive interfacial waves, where

shear at the interface also dominates the dissipation [44, 103]. As examples of other bottom-

trapped internal waves of elevation, Hosegood et al. [56] have measured bottom-trapped

solibores in the Faeroe-Shetland Channel, while Carter et al. [23] have observed highly

nonlinear solitary waves of elevation in Monterey Bay which propagate towards the shelf

break. While the generation mechanism for these waves is not yet clear, dissipation and

mixing levels within them is orders of magnitude higher than background levels.

6.5.2 Stratified Flow Past a Sill

Here we test our ability to generate internal waves. Using our 2D version of

DWPM2 from Section 4.1.4, we simulate a field-scale, idealized, internal wave generating

sill (as in Figure 6.5). This type of problem has been studied by [65, 41, 36], and is common

in oceanographic (and even atmospheric) settings where currents force a stratified profile

past topographic features.

The 2D domain is 256 [m] deep by 4096 [m] long, with a Gaussian sill centered

1024 meters from the left side. The Gaussian is described by, H exp
−x2

2σ2 , with σ = 105 [m2],

and the sill height H = 196 [m]. This makes the shallowest spot above the sill 60 [m] deep.

The domain is forced by a constant inflowing current from the left face at 0.2 [m/s] (which

is in the range of tidal currents). The stably stratified initial and inflowing density profile

is given by ρ = 1001 − exp0.0673z [kg/m3], where z = 0 is at the top of the domain. The

initial state is shown at the top of Figure 6.7, while significant features of the developed

flow are shown in Figure 6.6.
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Figure 6.6: Stratified flow past a sill: significant features (at t = 4750 [s]).

Figures 6.7-6.9 show the evolution of the flow past the sill. Figures 6.10-6.13 show

timeseries of integral quantities (i.e. integrals over the whole flow domain) of mass and

energy for this calculation. An internal hydraulic jump forms at the downstream side of the

sill, as can be seen in the density plots (Figure 6.7). The bifurcation point (at the hydraulic

jump in Figure 6.6), where the strong downslope flow detaches from the surface remains

relatively stationary throughout the calculation. The downslope currents entrain lighter

waters from the “stagnant” pool just downstream of the bifurcation point, with entrained

lighter waters advected downstream at the cores of vortices. The vortices are generated at

the shear layer downstream of the bifurcation point (see frame 4 in Figure 6.8).

Interestingly, three coherent structures are ejected from the hydraulic jump region.

First, a low frequency soliton propagates as a wave of depression along the pycnocline

(region of rapidly changing density) and exits the domain at t ≈ 5000 seconds (labeled

“First soliton” in Figure 6.6). This is easily identified as the large mass spike in figure 6.13,

because the outflowing profile has less mass (i.e. lower density) than the inflowing profile.

This is also apparent in the second to last frame in Figure 6.7. This low frequency wave is



94

Figure 6.7: Stratified flow past a sill. Density plots, with 15.833 minutes between frames.
(t = [0, 475, 950, 1425, 1900, 2375, 2850, 3325, 3800, 4275, 4750, 5225] seconds). Red is 1001
[kg/m3], blue is 1000 [kg/m3].
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Figure 6.8: Stratified flow past a sill. Vorticity plots, with 15.833 minutes between
frames (t = [0, 475, 950, 1425, 1900, 2375, 2850, 3325, 3800, 4275, 4750, 5225] seconds). Red
is counter-clockwise vorticity, blue is clockwise. The vorticity range is ≈ ±0.05 [1/s].
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Figure 6.9: Stratified flow past a sill. Passive scalar plots, with 15.833 minutes between
frames. (t = [0, 475, 950, 1425, 1900, 2375, 2850, 3325, 3800, 4275, 4750, 5225] seconds). Ini-
tially, red is z = 0, blue is z = −256 meters with a linear distribution between.
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Figure 6.10: Stratified flow past a sill. Kinetic, potential and total energy timeseries.
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also clearly evident in the density plot, yet it’s structure is not clear in the vorticity plot

due to it’s efficient propagation. Next a shorter wavelength, solitary wave of depression is

ejected and propagates downstream along the pycnocline (labeled “second soliton” in Figure

6.6). Finally, a large vortex patch is shed from the shear layer at the internal hydraulic

jump and propagates downstream along the bed (labeled “bottom-trapped vortex” in Figure

6.6). This vortex core has lighter waters in it’s core, but is trapped along the bottom due

to pressure gradients that are stronger than the buoyancy forcing. The vorticity plots also

show the merging (see frames 6-7) of vortex patches that are rotating in the same direction.

A careful inspection of the timeseries plots validates these findings. Specifically,

the system maintains essentially constant mass (see Figure 6.13) until t ≈ 4000 seconds

when the leading edge of the first depression wave begins to hit the outflow face. The spike

in potential energy change at t ≈ 2500 seconds (and the other spikes before t = 4000) are

not due to outflowing mass, but to an exchange with kinetic energy, i.e. heavy water is

lifted due to vertical velocity at the hydraulic jump. The gradual increase in kinetic energy

is due to the trapping of kinetic energy in the jump region, while the gradual increase in

potential energy is due to both the lifting of heavy water over the sill (notice the first 200

seconds in Figure 6.11 where nearly all energy is spent lifting the fluid over the sill), and

the outflow of lighter waters relative to the inflowing waters. Eventually, we expect the

system to reach a dynamic equilibrium state, with continued vortex shedding, entrainment

of lighter waters and internal wave generation. Note that the initial conditions are idealized

and the flow is likely highly 3D in realistic oceanic settings. Nonetheless, we expect similar

features to develop for similar flows past sills.
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A convergence study (using 16 processors) for the first 4 minutes of this problem

is presented in Tables 6.25-6.27. This shows that we are getting the expected accuracy for

this complex field-scale variable density flow.
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Table 6.25: Solution error convergence rates using L∞ norm: ∆xc = 1
256 = 2∆xm = 4∆xf ;

∆xc = (1.6000e + 01, 1.6000e + 01) = 2∆xm = 4∆xf ; a 2D calculation. Isotropic mesh
spacing.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 1.1622e-02 5.9232e-03 9.7246e-01

V-Velocity 1.0837e-02 5.7026e-03 9.2630e-01

Pressure 4.0891e-03 2.5460e-03 6.8354e-01

Density 5.7153e-02 1.9954e-02 1.5182e+00

Scalar-0 5.9958e+00 2.9695e+00 1.0137e+00

Scalar-1 6.0098e+00 3.0724e+00 9.6796e-01

px/ρ 1.0151e-04 5.0116e-05 1.0183e+00

py/ρ 2.8738e-04 1.5055e-04 9.3278e-01

Z-Vorticity 5.6106e-04 2.2425e-04 1.3231e+00

Table 6.26: Solution error convergence rates using L1 norm: ∆xc = 1
256 = 2∆xm = 4∆xf ;

∆xc = (1.6000e + 01, 1.6000e + 01) = 2∆xm = 4∆xf ; a 2D calculation. Isotropic mesh
spacing.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 6.3982e-05 1.6330e-05 1.9701e+00

V-Velocity 4.7190e-05 1.3562e-05 1.7989e+00

Pressure 3.3547e-04 8.8763e-05 1.9182e+00

Density 2.6976e-03 6.6357e-04 2.0233e+00

Scalar-0 4.2447e-02 1.2221e-02 1.7963e+00

Scalar-1 4.0836e-02 1.1791e-02 1.7922e+00

px/ρ 6.7210e-07 2.1273e-07 1.6597e+00

py/ρ 1.1772e-06 2.7423e-07 2.1019e+00

Z-Vorticity 5.0836e-06 2.0216e-06 1.3304e+00
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Table 6.27: Solution error convergence rates using L2 norm: ∆xc = 1
256 = 2∆xm = 4∆xf ;

∆xc = (1.6000e + 01, 1.6000e + 01) = 2∆xm = 4∆xf ; a 2D calculation. Isotropic mesh
spacing.

Variable Medium-Coarse Error Fine-Medium Error Order

U-Velocity 2.4874e-04 8.1063e-05 1.6175e+00

V-Velocity 3.3952e-04 1.2351e-04 1.4589e+00

Pressure 5.2176e-04 2.1079e-04 1.3076e+00

Density 7.2390e-03 1.8842e-03 1.9419e+00

Scalar-0 2.0823e-01 7.5751e-02 1.4589e+00

Scalar-1 3.2061e-01 1.2333e-01 1.3783e+00

px/ρ 3.5105e-06 1.1150e-06 1.6547e+00

py/ρ 5.9181e-06 1.4459e-06 2.0332e+00

Z-Vorticity 2.2425e-05 9.4235e-06 1.2507e+00
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6.5.3 Internal Wave Dissipation On a Uniform Slope

Here we test our ability to simulate internal waves breaking on a slope using

DWPM1. For this test case we follow the lab-scale experiments of [77] and simulate lab

scale dissipation of a solitary internal wave on a slope. The experimental tank is 3 [m] long

by 0.5 [m] wide and tall, with the 8:1 (vertical:horizontal) slope meeting the vertical wall

of the tank half way up. We initialize the density field as in figure 6.19, with salt water,

ρ = 1030 [kg/m3], on the bottom and fresh water, ρ = 1000 [kg/m3], on the top, and a

perturbed interface following φ = −0.25 − 0.15e−3x2

. We smooth the interface over 0.1 [m]

using the heaviside smoothing kernal (equation 60 in [99]).

We present our highly resolved 2D AMR calculations in the time sequence of figures

6.14-6.18. We present our 3D single-level calculations in the time sequence of figures 6.19-

6.24. In these figures, blue indicates fresh water and red is for salt water. In the 2D figures

we included the AMR disjoint box outlines. In the 3D figures we included an isosurface of

the density interface and streamtubes to aid in visualizing the simulation.
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Figure 6.14: Internal wave breaking 2D: initial conditions density plot. Blue is saltwater,
red is freshwater. Boxes indicate refined regions.

Figure 6.15: Internal wave breaking 2D: propagation density plot. Blue is saltwater, red is
freshwater. Boxes indicate refined regions.

Figure 6.16: Internal wave breaking 2D: shoaling density plot. Blue is saltwater, red is
freshwater. Boxes indicate refined regions.

Figure 6.17: Internal wave breaking 2D: breaking density plot. Blue is saltwater, red is
freshwater. Boxes indicate refined regions.

Figure 6.18: Internal wave breaking 2D: dissipation density plot. Blue is saltwater, red is
freshwater. Boxes indicate refined regions.
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Figure 6.19: Internal wave breaking 3D: initial conditions, t = 0.00 [s]. Blue is saltwater,
red is freshwater. Iso-contour of salt-fresh interface, streamtubes aid in visualizing flow.

Figure 6.20: Internal wave breaking 3D: shoaling, t = 13.70 [s]. Blue is saltwater, red is
freshwater. Iso-contour of salt-fresh interface, streamtubes aid in visualizing flow.
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Figure 6.21: Internal wave breaking 3D: breaking, t = 20.24 [s]. Blue is saltwater, red is
freshwater. Iso-contour of salt-fresh interface, streamtubes aid in visualizing flow.

Figure 6.22: Internal wave breaking 3D: breaking, t = 28.69 [s]. Blue is saltwater, red is
freshwater. Iso-contour of salt-fresh interface, streamtubes aid in visualizing flow.
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Figure 6.23: Internal wave breaking 3D: dissipation, t = 38.31 [s]. Blue is saltwater, red is
freshwater. Iso-contour of salt-fresh interface, streamtubes aid in visualizing flow.

Figure 6.24: Internal wave breaking 3D: dissipation, t = 49.57 [s]. Blue is saltwater, red is
freshwater. Iso-contour of salt-fresh interface, streamtubes aid in visualizing flow.
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6.6 Idealized Flow in Lake Tahoe

For a challenging field-scale test of the method, here we calculate idealized flows

in Lake Tahoe. The main goal of this Section is to illustrate that our method could be used

to address field-scale environmental fluid mechanics questions.

Through remote and direct observations, fascinating upwelling and lake circulation

patterns have been identified in Lake Tahoe, CA-NV [98, 97, 91]. These likely play a

significant role in the dynamics of Lake Tahoe water quality. These patterns are thought to

be caused by wind shear induced surface currents that interact with the density distribution,

and the lake bathymetry. Through field data and conceptual analysis, researchers have

identified these surface patterns as signatures of upwelling events [98, 97, 91]. These complex

upwelling events are poorly understood due to sparse spatial and temporal observations,

yet they are observed in many lakes around the world.

Lake Tahoe is so weakly forced that at present the only feasible long term calcula-

tions with our non-hydrostatic method are constant density. This is due to the fact that the

method is constrained by an advective CFL number that depends on internal wave speeds,

which can be on the order of 1 [m/s] for Lake Tahoe [90]. During “spin up” of the model the

wind forcing is so light that intial maximum velocities are on the order of 10−9 [m/s]. This

means that given todays computational resources, the “spin up” duration is not feasible for

this version of our method. We anticipate further optimizations, and advances in computer

hardware that will enable realistic non-hydrostatic 3D calculations in the not too distant

future.

Our first idealized Lake Tahoe test is flow in a 2D, East-West, cross-section of
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the lake, with constant density (to avoid the internal wave CFL constraint during “spin

up”). The cross-section is taken from a USGS DEM of the lake, and is cut to pass through

Deadman Point on the East side of the lake, as is indicated in Figure 6.25. Our 2D grid

has a 17 [m] isotropic mesh spacing. We force the model for 12 days with a constant 10

[m/s] wind blowing to the East. This simulation is shown in Figure 6.26, with a zoom in

shown in Figure 6.27. As expected, the model (using DWPM1 of Section 4.1.4) simulates

a surface layer moving to the East. When this advancing surface layer encounters the East

shoreline it plunges and recirculates as a slow moving jet that interacts dramatically with

the bottom topography. The jet is clearly seen in the zoomed in Figure 6.27. On the West

side of the Figure 6.26 cross-section we note an upwelling return current that feeds the

surface layer. Note that the timescale over which this happens is 12 days, with maximum

interior (non-surface currents) jet velocities in the range of 2 − 4 [cm/s].

While these images look impressive, it is important to note that Lake Tahoe is

in fact thermally stratified (although it can be well mixed to a depth of 300-500 [m] in

late winter), and therefore such a jet would not penetrate as deep into the lake (not to

mention 3D effects). Nonetheless, researchers might find similar slow moving jets along the

pycnocline.

Our next test is to calculate 3D flow in Lake Tahoe. We force the model with the

same constant wind as the 2D case. The 3D grid has an 80 [m] isotropic mesh spacing.

For this simulation our preliminary results in Figure 6.28 indicate three dimensional flow

features. In this calculation we are severely computationally limited (even on 128 processors

of a DOE supercomputer), and therefore are only able to simulate the initial period of the
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constant density “spin up”, roughly the equivalent of frame 2 in Figure 6.26. It is interesting

to note that in figure 6.28, we are seeing 3D motions in the results. Notice the gyre near

South Lake Tahoe, and the overall overturning rotational motion.

Recall the disclaimer that this is a constant density calculation, and neglects strat-

ification and rotational effects. These Lake Tahoe tests are not meant to reproduce actual

conditions. Stratification plays a significant role in the motions within Lake Tahoe. For

a hydrostatic approximation to flows in Lake Tahoe the reader may find [90] of interest.

This Section is only meant to illustrate our ability to simulate flows in realistic geometry

at field-scale.
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Figure 6.26: Idealized 2D Lake Tahoe circulation, a passive scalar time sequence at
t = [0.00, 2.47, 3.88, 4.92, 5.78, 6.61, 7.43, 8.26, 9.14, 10.04, 10.93, 11.82] days. Wind forcing
is from left to right. Color coding is a passive scalar advected with the flow.
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Figure 6.27: Idealized 2D Lake Tahoe circulation, a passive scalar time sequence at t =
[0.00, 2.47, 3.88, 4.92, 5.78, 6.61, 7.43, 8.26, 9.14, 10.04, 10.93, 11.82] days. Zoomed in on the
right side of Figure 6.26, and with a more constrained color-map.
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Figure 6.28: Idealized 3D Lake Tahoe circulation. Streamlines indicate instantaneous cur-
rent direction for a hypothetical constant density calculation.
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Chapter 7

Conclusion

7.1 Summary and Conclusions

This thesis presents an adaptive Cartesian grid projection method that is suitable

for the accurate numerical study of incompressible fluids.

First our embedded boundary discretization was presented, including the geomet-

ric description, and discretizations of elliptic, parabolic and hyperbolic PDEs. The geomet-

ric description is relatively new, and is efficient and robust for all problems we have tried.

This is because the geometry is generated in O(N
D−1

D ) calculations from easily defined

distance functions, is “water-tight” and therefore allows exactly conservative finite volume

discretizations, handles arbitrarily complex geometries, and is easily coarsened/refined for

use in multigrid and AMR.

Second our single-grid finite volume discretization of the incompressible Navier-

Stokes equations were presented. This algorithm for solving the incompressible Navier-

Stokes equations in complex geometry with buoyancy forcing, extends the work of [25, 26,
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27, 9, 12, 1, 72] while maintaining second-order accuracy.

Third we extended the single-grid algorithm to block-structured adaptive mesh

refinement. This method enables the efficient and accurate simulation of multiscale, envi-

ronmental flows in realistic complex geometry. For example, the greatest impediment to

the numerical simulation of oceanic internal waves is the broad range of length scales over

which they exist. This is not surprising for most field-scale numerical simulations especially

when dissipation scales are involved. However, internal waves still present a challenging

computational problem simply due to the range of scales which govern their generation,

propagation, and breaking even if all the dissipative scales are not to be captured. AMR

makes the simulation of multiscale highly nonlinear internal waves a tractable problem.

Fourth we presented results from a range of test cases to validate that our method

is in fact second-order accurate. Our three lab-scale tests (spherical driven cavity, trapped

vortex, and flow past a sphere) show that our method is performing as expected. The flow

past a sphere example also validated our adaptive algorithm. To test the density-weighted

projection methods we simulated field-scale stratified flow past a sill, and breaking internal

waves on a lab-scale slope, with and without AMR. For the flow past a sill test we validated

that our method is second-order accurate, and produced some interesting results (an internal

hydraulic jump, vortex shedding, bottom-trapped vortices, and internal solitary waves of

depression). Finally we tested the method using a realistic field-scale bathymetry, Lake

Tahoe. The Lake Tahoe simulations are highly idealized and illustrated a need for a code

optimization cycle. The Lake Tahoe simulations are so weakly forced by wind stress that

the “spin up” time for cases including stratification is prohibitive.
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7.2 Future Work

Our first task for future work is to implement optimizations to speed up the code.

Serial and parallel performance optimizations are clearly needed in the elliptic solver. Op-

timizations of our current solver may include reducing the communication costs by a) uti-

lizing additional ghost-cells, and b) improving our load-balancing algorithm. Though we

use multigrid, an O(N) method, the communication costs on parallel computers is a lim-

iting factor to parallel scaling. We might also need to take a more significant approach to

speeding up our elliptic solver, and derive a cell-centered EB AMR approach following [76].

Extension of this work to the case where the coarse-fine interface is allowed to cross

the embedded boundary interface would be useful. This would remove the constraint that

all irregular control-volumes have maximum refinement (the hyperbolic case has already

been successfully addressed in [31]). The elliptic case is relatively straightforward, and

at the interface crossing requires modification of: 1) the Dirichlet embedded boundary

condition, 2) the coarse-fine interpolation step and 3) conservative coarse-fine refluxing. An

initial implementation of the coarse-fine crossing the EB interface for the elliptic algorithm

is promising.

An additional useful extension is the ability to subcycle the levels to maintain

consistent CFL numbers across all control volumes. This extension would follow the works

of [1, 72], with an additional freestream conservation fix following [33].

We anticipate extending the method to higher-order accuracy by following the work

of [5]. The quadrature formulas in [5] provide a systematic mechanism for distinguishing

between averages over cells, averages over faces, and point values, to fourth-order accuracy.
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This can be combined with the ideas here and in [34] to obtain fourth-order in space finite-

volume discretizations for nonlinear hyperbolic problems on a locally-refined grid. It is not

obvious how to extend the Mehrstellen discretizations in [5] to the case where the right-hand

side includes a time derivative, particularly in the case where implicit differencing in time

is required. We will consider a variety of possible approaches here, including fully implicit

methods and predictor-corrector approximations to such methods in which the Mehrstellen

correction is treated explicitly. The fourth-order spatial approach is straightforward to

pursue in conjunction with second-order accurate temporal discretizations. However, the

extension to higher order in time is still an active research issue [18]. It would be necessary

to compute higher moments of the intersections between the irregular domain and the

Cartesian grid.
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Appendix A

Miscellaneous Discretizations

A.1 Matrix Form of the Laplacian Without EB’s

The second-order accurate two-dimensional, anisotropic grid, Laplacian stencil can

be written as:

Lφ =

















1
dy2

1
dx2 ( −2

dx2 + −2
dy2

) 1
dx2

1
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φ (A.1)

Where the stencil is simplified to:

Lφ =
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a d a

b

















φ (A.2)

Which for a four by four periodic domain yields the following symmetric matrix

operator:
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(A.3)

A.2 Line Solves for Elliptic and Parabolic Equations

One of the target application areas for this research is studying large-scale geophys-

ical flows. These flows are typically of large aspect ratio, i.e. horizontal scales are larger

than vertical scales. For example, Lake Tahoe has horizontal scales that are O(10km)
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and a vertical scale that is O(500m). When solving elliptic partial differential equations

for large aspect ratio systems it is common to reduce the computational load by having

∆x 6= ∆z 6= ∆y. When the aspect ratio is more than (roughly) 2, traditional multigrid

smoothers fail to dampen high frequency errors and multigrid convergence stalls. This is

a well known problem, and can be easily seen by noting that the stencil in (A.1) becomes

dimensionally decoupled when ∆x >> ∆y. There are two “fixes” that are traditionally

employed: 1) anisotropic coarsening in multigrid, 2) line solving, or 3) both [19]. For our

approach in this research we chose to implement a line solver that is both AMR and EB

aware. The AMR multigrid solution algorithm is described in Section 5.4. A pseudo-code

procedure LineSmoother(φ,R)

{

δ = 0

g = (I − λLhxy)δ + λR

δ = (I + λLhz )
−1g

φ = φ+ δ

}

Figure A.1: Pseudo-code description of the line smoother algorithm.

description of our line smoother algorithm is given in Figure A.1. For the algorithm we

initialize the correction δ to zero, then we evaluate our horizontal Laplacian stencil (Lhxy),
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and compute a new right-hand-side (g). Where, λ = 1
4diag(Lh)

, and where (I − λLhxy)0 = 0.

Subsequently we do a tri-diagonal solve using our new right-hand-side (g = λR). Then we

apply the correction to φ (where φ is a correction since we are already in residual-correction

form). We use the Thomas Algorithm when doing the tri-diagonal solve, and where we

have covered cells (κ = 0) we set the diagonal term to 1 and the two off diagonal terms to

zero. This decouples covered cells from the non-covered control volumes and permits the

line solver to handle arbitrarily complex geometry. A validation of the line solver is given

in Section B.2.

A.3 Stair-Step Errors
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Figure A.2: Stair-Step accuracy
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A.4 Free-Surface Discretization: Scalars

For a conservative treatment of scalars at the free-surface boundary, our algorithm

keeps a budget of scalar transport into and out of the free-surface volume. To do this in a

stable way, we use the redistribution ideas from Section (4.3). The algorithm is developed

as follows. We temporarily define i as an index for the first control volume below the top

domain face (z = 0). A conservative update for scalars (denoted ρ) in the free-surface at

time n+ 1 is,

ρCi+eD
= ρni+eD

− ∆tDC
i+eD

. (A.4)

Where DC
i+eD

is a conservative (and free-stream preserving) divergence for the free-surface

control volume (i + eD),

DC
i+eD

=
w

i+ 1

2
eD
ρi+eD

− w
i+ 1

2
eD
ρ

i+ 1

2
eD

η
, (A.5)

and
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2
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2
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2
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if w
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2
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1
2(ρ̃L
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2
eD
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) if w

i+ 1

2
eD
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(A.6)

Since η can be zero, we need a stable update for scalars,

ρNCi+eD
= ρni+eD

− ∆t

[

βDC
i+eD

+ (1 − β)DNC
i+eD

]

, (A.7)

where η is at time n+ 1
2 here and for the remainder of this Section. We use

DNC
i+eD

= Di, (A.8)
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where Di is our “standard” advective term from Section (4.3). The difference between (A.4)

and (A.7) is

ρCi+eD
− ρNCi+eD

= ∆t

[

(β − 1)DC
i+eD

+ (1 − β)DNC
i+eD

]

. (A.9)

Where this is a mass if we multiply by the free-surface volume |Vi+eD
| = η∆x∆yα (where

α is the area fraction at the domain face) and re-arrange

δM = ∆t|Vi+eD
|
[

(1 − β)(DNC
i+eD

−DC
i+eD

)

]

. (A.10)

We need to redistribute the mass (δM), and so we do this in a volume weighted manner,

δMi+eD
=

|Vi+eD
|

|Vi| + |Vi+eD
|δM (A.11)

and

δMi =
|Vi|

|Vi| + |Vi+eD
|δM (A.12)

This yields our conservative free-surface scalar update

ρn+1
i+eD

= ρNCi+eD
+
δMi+eD

|Vi+eD
| , (A.13)

or

ρn+1
i+eD

= ρNCi+eD
+ ∆t

αη

κ∆z + αη

[

(1 − β)(DNC
i+eD

−DC
i+eD

)

]

. (A.14)

For conservation, we need to modify the scalar inside of the domain face by,

ρn+1
i

= ρCi +
δMi

|Vi|
, (A.15)

or

ρn+1
i

= ρCi + ∆t
αη

κ∆z + αη

[

(1 − β)(DNC
i+eD

−DC
i+eD

)

]

, (A.16)
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where as in Section (4.3),

ρCi = ρni − ∆tDi. (A.17)

It is important to note in (A.14) and (A.16), DC is multiplied by η, eliminating

the division by η, a possibly zero value. If we examine (A.14) and (A.16) we notice that

when αη = −κ∆z we divide by zero (because the volume weighted redistribution has a net

receiving volume of zero). To fix this problem we define β as follows:

β =























1 if |αη| > κ∆z
2 ,

2|αη|
κ∆z else.

(A.18)

This choice of β restricts our CFL to smaller than 1
2 .

A.5 Free-Surface Discretization: η and < ~u >

Here we evolve (2.10) and (2.14) explicitly using stable time step(s) from time

tn to time tn+1. Note that a “stable time step” might need to be smaller than tn+1 −

tn, i.e. we subcycle the free-surface boundary condition as needed (similar to [62, 39]).

Subcycling permits us to evolve the momentum balance independent of the free-surface

wave speed. Without subcycling, the C.F.L. constraint imposed by fast moving free-surface

waves typically slows the main code down by ∼ 100. Notice that (2.10) and (2.14) make up

a coupled hyperbolic system. We advance this system at a subcycled time step ∆s = ∆t/N ,

where the integer N >= 1, and ensures that our CFL constraint on free-surface wave speeds

is satisfied. We advance (2.10) and (2.14) by

ηm+1 = ηm − ∆s∇⊥ · ((η +H) < ~u >) (A.19)
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and

< ~u⊥ >m+1= ~um + ∆s∇⊥(gη) (A.20)

Where ∇⊥ · ((η+H) < ~u >) and ∇⊥(gη) are computed with a first-order Godunov method,

where g is the gravitational acceleration. In the Godunov method, for the d = 0 component,

given low (L) and high (H) states, our Riemann solver is as follows,

< u >∗=
1

2

[

< u >L + < u >H +

√

−g
h

(ηL − ηH)

]

(A.21)

and

η∗ =
1

2

[

ηL + ηH +

√

h

−g (< u >L − < u >H)

]

. (A.22)
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Appendix B

Convergence Properties of the

Main Operators

B.1 Hyperbolic Equations

Our test problem here is scalar advection (st + ~u · ∇s = 0) of a Gaussian bump

down an inclined channel. A 2D isotropic convergence study for this problem is shown

in Table B.1. A 2D AMR isotropic convergence study for this problem is shown in Table

B.2. A 2D anisotropic convergence study for this problem is shown in Table B.3. A 3D

anisotropic convergence study for this problem is shown in Table B.4.

For hyperbolic problems we expect the convergence rates for our method to be:

r∞ = 1.0, r2 = 1.5, r1 = 2.0, where we indicate convergence rates rp as in (6.2). The

convergence tables in this section indicate that we are achieving the expected rates.
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Variable Medium-Coarse Error Fine-Medium Error Order

L∞ Norm of Scalar Error 8.3294e-03 4.1744e-03 9.9664e-01

L1 Norm of Scalar Error 2.2876e-05 5.6418e-06 2.0196e+00

L2 Norm of Scalar Error 6.6815e-05 1.9502e-05 1.7765e+00

Table B.1: Hyperbolic test problem: isotropic grid, solution error and convergence rates:
∆xc = 1

256 = 2∆xm = 4∆xf ; a 2D calculation.

Variable Medium-Coarse Error Fine-Medium Error Order

L∞ Norm of Scalar Error 1.3367e-02 5.7748e-03 1.2109e+00

L1 Norm of Scalar Error 1.5316e-04 3.5190e-05 2.1218e+00

L2 Norm of Scalar Error 5.7150e-04 1.3468e-04 2.0852e+00

Table B.2: Hyperbolic test problem: isotropic grid, solution error and convergence rates:
∆xc = 1

16 = 2∆xm = 4∆xf ; a 2D calculation with 3 AMR levels having nref = 4.

Variable Medium-Coarse Error Fine-Medium Error Order

L∞ Norm of Scalar Error 1.6868e-02 8.4677e-03 9.9426e-01

L1 Norm of Scalar Error 1.1499e-04 3.0643e-05 1.9078e+00

L2 Norm of Scalar Error 5.7566e-04 2.0620e-04 1.4812e+00

Table B.3: Hyperbolic test problem: anisotropic grid (∆x = 4∆y), solution error and
convergence rates: ∆xc = 1

128 = 2∆xm = 4∆xf ; a 2D calculation.

Variable Medium-Coarse Error Fine-Medium Error Order

L∞ Norm of Scalar Error 5.4763e-02 3.2235e-02 7.6459e-01

L1 Norm of Scalar Error 8.4448e-03 2.1650e-03 1.9637e+00

L2 Norm of Scalar Error 1.7622e-02 4.4385e-03 1.9893e+00

Table B.4: Hyperbolic test problem: anisotropic grid (∆x = ∆y = 2∆z), solution error
and convergence rates: ∆xc = 1

16 = 2∆xm = 4∆xf ; a 3D calculation. Computed using 2
parallel processors.
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B.2 Elliptic Equations

To illustrate our ability to solve anisotropic elliptic problems, here we present

results from a simple test case, where the exact solution is φ = sin(1.3x)sin(2.2y)[sin(3.1z)].

Consider a sphere of radius 0.25 centered in a unit domain, see the coarse-grid layout in

figure B.1. Our 2D fine grid has 32x640 (i.e. 20:1 aspect ratio) level-zero cells (including

covered cells) and our AMR refinement ratio is two. The coarse solution is on the same

grid layout as the fine solution, but coarsened by a factor of two.

We solve an elliptic problem using our AMR multigrid method (outlined above),

and present the expected multigrid convergence history in figure B.2. The method maintains

second-order accuracy, see Table B.5 for 2D AMR results, and see Table B.6 for 3D single

grid results.

For elliptic problems we expect the convergence rates for our method to be: r∞ =

2.0, r2 = 2.0, r1 = 2.0, where we indicate convergence rates rp as in (6.2). The convergence

tables in this section indicate that we are achieving the expected rates.

B.3 Parabolic Equations

Our test problem here is scalar diffusion (st = ν∆s+H) in a unit domain with a

centered embedded sphere of radius 1
4 . Our exact solution s = sin(5x)sin(5y)sin(5z)cos(t)

is imposed as an initial condition (at t = 0) and as a Dirichlet boundary condition. The

source term H is computed from the exact solution given ν = 0.01. A 2D anisotropic

convergence study for this problem is shown in Table B.7. A 3D anisotropic convergence

study for this problem is shown in Table B.8.
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Figure B.1: Coarse solution error for a 20:1 aspect ratio 2D AMR solve

Variable Coarse Error Fine Error Order

L∞ Norm Error 1.051167e-03 2.836212e-04 1.889955e+00

L1 Norm Error 9.717318e-05 2.456552e-05 1.983924e+00

L2 Norm Error 1.909830e-04 4.851628e-05 1.976903e+00

Table B.5: Elliptic test problem: solution error convergence rates for a 20:1 aspect ratio
AMR solve. ∆xf = 1

32 and ∆xc = 2∆xf , 2D

Variable Coarse Error Fine Error Order

L∞ Norm Error 3.873316e-03 1.019814e-03 1.925263e+00

L1 Norm Error 6.459656e-05 1.403111e-05 2.202828e+00

L2 Norm Error 9.121400e-05 2.166892e-05 2.073628e+00

Table B.6: Elliptic test problem: solution error convergence rates for a 4:4:1 aspect ratio
single grid solve. ∆xf = 1

64 and ∆xc = 2∆xf , 3D
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Figure B.2: Multigrid convergence for a 20:1 aspect ratio 2D AMR solve
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For parabolic problems we expect the convergence rates for our method to be:

r∞ = 2.0, r2 = 2.0, r1 = 2.0, where we indicate convergence rates rp as in (6.2). The

convergence tables in this section indicate that we are achieving the expected rates.

B.4 Density Weighted Projections

Here we project a given velocity field onto a divergence-free space. Our given

divergent velocity field is ~u = (sin(πx), sin(2πy), sin(3πz)). For the density weighted pro-

jections, which use DWPM1 of 4.1.4, we prescribe a density field of ρ = 2 + sin(x) +

sin(y) + sin(z). We have a unit domain with a centered embedded sphere of radius 1
4 , and

our boundary conditions are ~u · ~n = 0.

B.4.1 Density Weighted Cell Centered Projection

A 2D anisotropic convergence study for this problem is shown in Table B.9. A 3D

anisotropic convergence study for this problem is shown in Table B.10. For approximate

cell-centered projections we expect the convergence rates for our method to be: r∞ =

1.0, r2 = 1.5, r1 = 2.0, where we indicate convergence rates rp as in (6.2). The convergence

tables in this section indicate that we are achieving the expected rates.

B.4.2 Density Weighted MAC Projection

A 2D anisotropic convergence study for this problem is shown in Table B.11. A 3D

anisotropic convergence study for this problem is shown in Table B.12. For MAC-projections

we expect exact projections, and this is what we are achieving.
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Variable Coarse Error Fine Error Order

L∞ Norm of Error 3.628538e-02 1.074547e-02 1.755660e+00

L1 Norm of Error 5.242795e-03 1.335954e-03 1.972465e+00

L2 Norm of Error 7.953677e-03 2.038763e-03 1.963928e+00

Table B.7: Parabolic test problem: solution error convergence rates (∆x = 2∆y). ∆xf = 1
16

and ∆xc = 2∆xf ; a 2D calculation with 2 AMR levels having nref = 4.

Variable Coarse Error Fine Error Order

L∞ Norm of Error 4.814209e-02 1.298819e-02 1.890098e+00

L1 Norm of Error 4.869321e-03 1.212166e-03 2.006133e+00

L2 Norm of Error 7.659393e-03 1.922383e-03 1.994334e+00

Table B.8: Parabolic test problem: solution error convergence rates (∆x = ∆y = 2∆z).
∆xf = 1

16 and ∆xc = 2∆xf ; a 3D calculation with 1 AMR levels having nref = 4.

Variable Coarse Divergence Fine Divergence Order

L∞ Norm Divergence 1.050206e-01 5.342729e-02 9.750238e-01

L1 Norm Divergence 3.527372e-03 9.168277e-04 1.943871e+00

L2 Norm Divergence 6.020600e-03 2.022201e-03 1.573981e+00

Table B.9: Cell centered projection: divergence and convergence rates (∆x = 2∆y). ∆xf =
1

128 and ∆xc = 2∆xf ; a 2D calculation with 2 AMR levels having nref = 2.

Variable Coarse Divergence Fine Divergence Order

L∞ Norm Divergence 1.299411e+00 6.439040e-01 1.012940e+00

L1 Norm Divergence 1.519918e-01 4.303184e-02 1.820517e+00

L2 Norm Divergence 2.056353e-01 6.222668e-02 1.724483e+00

Table B.10: Cell centered projection: divergence and convergence rates (∆x = ∆y = 2∆z).
∆xf = 1

32 and ∆xc = 2∆xf ; a 3D calculation with 2 AMR levels having nref = 2.

Variable Coarse Divergence Fine Divergence Order

L∞ Norm Divergence 1.054312e-11 1.187086e-10 discretely exact

L1 Norm Divergence 2.742717e-13 2.923945e-12 discretely exact

L2 Norm Divergence 9.290043e-13 8.457004e-12 discretely exact

Table B.11: MAC Projection: divergence and convergence rates (∆x = 2∆y). ∆xf = 1
32

and ∆xc = 2∆xf ; a 2D calculation with 2 AMR levels having nref = 2.
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Variable Coarse Divergence Fine Divergence Order

L∞ Norm Divergence 9.036771e-12 1.013891e-10 discretely exact

L1 Norm Divergence 2.306771e-13 1.646531e-12 discretely exact

L2 Norm Divergence 6.033329e-13 4.551875e-12 discretely exact

Table B.12: MAC Projection: divergence and convergence rates (∆x = ∆y = 2∆z). ∆xf =
1
32 and ∆xc = 2∆xf ; a 3D calculation with 2 AMR levels having nref = 2.
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Appendix C

Examples

Here we present example visualizations to illustrate our ability to approximate

complex geometries, and simulate interesting flows using the method of this work.

C.1 Grid Generation

Our first grid generation example is shown in Figure C.1 and is an approximation

of a sphere-flake, a recursive flake like geometry. Again, it is important to note that in this

and the following figures we visualize the EB’s as piecewise planar, when in fact we use

piecewise quadratic approximations for face intersections.

This example is generated from a digital elevation model of the South China Sea. In

Figure C.2 we present South China Sea bathymetry with parallel adaptive mesh refinement

boxes. Black boxes are a decomposition of the coarsest level, red boxes are finer grids. Each

box is further sub-divided into individual control volumes. The red boxes refine both the

Luzon Strait vicinity (right) and the Dongsha Island region (left). Upper right is Taiwan,
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Figure C.1: EB approximation of a sphere-flake

lower right is the Philippines, mainland China is upper left. The East-West slice is colored

by distance to the bed.

C.2 Flow Calculations

Here we present the classic lock-exchange problem from fluid dynamics. Flow is

inside a 0.5 [m] tall, by 3 [m] wide tank. On the left side of the tank we start with light water,

on the right is heavy water. The density ratio of light fluid to heavy fluid is 1000/1030.

A resulting snapshot of the flow as it evolves using 4 AMR levels is shown (zoomed in)

in Figure C.3, with the adaptive control volumes shown in Figure C.4. Notice that we
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Figure C.2: EB approximation of the South China Sea
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Figure C.3: Lock-exchange with AMR: density plot

Figure C.4: Lock-exchange with AMR: control volumes

are resolving the boundary layer at the top and bottom of the tank, and are generating

Kelvin-Helmholtz type billows along the unstable density interface. If we add a bottom

slope to the same tank setup we see results as in figure C.5.

Next we present a simulation of an intrusive gravity current problem (from the lab

study of [69]). The laboratory setup is a 1.82 [m] long by 0.2 [m] tall by 0.23 [m] wide tank.

The initially still water is separated into 3 density zones, where ρ1 = (ρ0 + ρ2)/2. On the

left 0.30 [m] of the tank is ρ1, the remaining right side of the tank is split vertically with
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Figure C.5: Lock-exchange down a slope with AMR: density plot

ρ0 on the top half and ρ2 on the bottom half. We set ρ0 = 1002.6 [kg/m3] and ρ2 = 1039.9

[kg/m3] and let the flow evolve. Figure C.6 presents a snapshot of the 2D calculation.
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Figure C.6: Intrusive gravity current: density plot
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Appendix D

Journal Papers

D.1 Tidal Oscillation of Sediment Between a River and a

Bay: A Conceptual Model

During completion of this dissertation [45] was published.

D.2 A Fourth-Order Accurate Local Refinement Method for

Poisson’s Equation

During completion of this dissertation [5] was published.
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D.3 A Cartesian Grid Embedded Boundary Method for the

Heat Equation and Poisson’s Equation in Three Dimen-

sions

During completion of this dissertation [92] was published.

D.4 A Cartesian Grid Embedded Boundary Method for the

Incompressible Navier-Stokes Equations

During completion of this dissertation [7] was in preparation for publication.

D.5 An Adaptive Cartesian Grid Embedded Boundary Method

for the Incompressible Navier-Stokes Equations

During completion of this dissertation [6] was in preparation for publication.


	List of Figures
	List of Tables
	Introduction
	Motivation
	Review of Previous Work
	Models
	Temporal Discretizations
	Spatial Discretizations

	Proposed Method
	Second-Order Accurate Projection Method For Incompressible Navier-Stokes
	Accurate Spatial Description with Embedded Boundaries
	Multiscale Capturing with Adaptive Mesh Refinement
	Implementation

	Summary of Contents

	Governing Equations
	Incompressible Navier-Stokes Equations
	Boundary Conditions
	Velocity Boundary Conditions
	Pressure Boundary Conditions
	Scalar Boundary Conditions

	Projection Formulation
	Other Notation

	Embedded Boundary Discretization
	Geometric Description
	Introduction to Embedded Boundaries
	Geometry Generation
	Embedded Boundary Examples

	Divergence of Fluxes
	Elliptic and Parabolic Equations
	Poisson's Equation
	Variable Coefficient Elliptic Equation
	The Heat Equation

	Hyperbolic Equations

	The Incompressible Navier-Stokes Equations on a Single Grid
	Semidiscrete Version of Projection Formulation
	Compute Advective Terms
	Update Scalars
	Predict Velocity
	Correct Predicted Velocity

	Discretizing Projections
	Face-Centered MAC Projection
	Cell-Centered Projections

	Advection Details
	Extrapolate Advective Velocities to Face Centers at n+12
	Extrapolate Remaining Quantities to Face Centers at n+12
	Compute Advective Terms
	Limited Slope Computation
	Upwinding


	The Incompressible Navier-Stokes Equations with AMR
	Introduction to Block-Structured AMR
	EB AMR Notation
	Hyperbolic Equations
	Elliptic and Parabolic Equations
	The Incompressible Navier-Stokes Equations

	Results
	Accuracy Measures
	Sphere Driven Cavity
	Trapped Vortex
	Flow Past a Cylinder/Sphere
	Internal Wave Generation and Dissipation
	Internal Wave Background and Relevant Literature
	Stratified Flow Past a Sill
	Internal Wave Dissipation On a Uniform Slope

	Idealized Flow in Lake Tahoe

	Conclusion
	Summary and Conclusions
	Future Work

	Bibliography
	Miscellaneous Discretizations
	Matrix Form of the Laplacian Without EB's
	Line Solves for Elliptic and Parabolic Equations
	Stair-Step Errors
	Free-Surface Discretization: Scalars
	Free-Surface Discretization:  and <>

	Convergence Properties of the Main Operators
	Hyperbolic Equations
	Elliptic Equations
	Parabolic Equations
	Density Weighted Projections
	Density Weighted Cell Centered Projection
	Density Weighted MAC Projection


	Examples
	Grid Generation
	Flow Calculations

	Journal Papers
	Tidal Oscillation of Sediment Between a River and a Bay: A Conceptual Model
	A Fourth-Order Accurate Local Refinement Method for Poisson's Equation
	A Cartesian Grid Embedded Boundary Method for the Heat Equation and Poisson's Equation in Three Dimensions
	A Cartesian Grid Embedded Boundary Method for the Incompressible Navier-Stokes Equations
	An Adaptive Cartesian Grid Embedded Boundary Method for the Incompressible Navier-Stokes Equations


